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The efficient certification of classically intractable quantum devices has been a central research ques-
tion for some time. However, to observe a “quantum advantage”, it is believed that one does not
need to build a large scale universal quantum computer; a task which has proven extremely challeng-
ing. Intermediate quantum models that are easier to implement, but which also exhibit this quantum
advantage over classical computers, have been proposed. In this work, we present a certification
technique for such a sub-universal quantum server which only performs commuting gates and re-
quires very limited quantum memory. By allowing a verifying client to manipulate single qubits, we
exploit properties of measurement based blind quantum computing to give them the tools to prove
the “quantum superiority” of the server.

1 Introduction

Quantum computers are believed to be able to efficiently simulate some quantum systems [15, 19] while
other protocols demonstrating their power include Shor’s algorithm for prime factorisation [36], Grover’s
algorithm for unstructured search [20], and the BB84 [5] and Ekert91 [14] protocols for public key
exchange. That said, it may be some time before a large scale universal quantum computer capable of
demonstrating the computational power of these protocols is built. In the meantime several intermediate,
non-universal models of quantum computation, which are still believed to not be classically simulatable,
may prove easier to implement. Examples of such models include the one clean qubit model [25, 28], the
boson sampling model [1, 18, 30] and the Ising model [17, 29]. The Instantaneous Quantum Poly-time
(IQP) machine [35] is another such non-universal model with significant practical advantages [2, 6]. IQP
uses only commuting gates but is believed to remain hard to classically simulate [6, 7, 9] even in a noisy
environment [8]. Hence, providing evidence that a machine can perform hard IQP computations would
be a proof of quantum superiority before a universal quantum computer has been experimentally realised.

In [35], the authors present a hypothesis test which can be passed only by devices capable of perform-
ing hard IQP computations. In order to accommodate a purely classical client, computational assump-
tions (conjecturing the hardness of finding hidden sub-matroids) are required in order to prove quantum
superiority. In the present work, by endowing the Client with the ability to perform simple qubit ma-
nipulations similar to that used in Quantum Key Distribution schemes [5], we develop an information-
theoretically secure hypothesis test for IQP.



2 Information Theoretically Secure Hypothesis Test for the IQP Machine

The remainder of the paper proceeds as follows. In Section 2, we formally introduce the IQP machine
and provide an implementation in Measurement Based Quantum Computing (MBQC) [33, 34] which is
more suitable for proving security in our framework than previous ones [35, 22]. In Section 3 we use tools
from blind quantum computing [10, 16] to derive a delegated protocol for IQP computations which keeps
the details of the computation hidden from the device performing it. We prove information-theoretic
security of that scheme in a composable framework. In Section 4 we develop an information theoretically
secure hypothesis test that a limited quantum Client can run to certify the quantum superiority of an
untrusted Server. Proofs of the lemmas and theorems found in this work are given in full in [27].

2 Preliminaries

2.1 X-programs

The IQP machine introduced in [35] is defined by its capacity to implement X-programs.

Definition 2.1. An X-program consists of a Hamiltonian comprised of a sum of products of X operators
on different qubits, and θ ∈ [0,2π] describing the time for which it is applied. The h-th term of the sum
has a corresponding vector qh, called a program element, which defines on which of the np input qubits,
the product of X operators, which constitute that term, acts. The vector qh has 1 in the j-th position
when X is applied on the j-th qubit.

As such, we can describe the X-program using θ and a poly-size list of na vectors qh ∈ {0,1}np or, if
we consider the matrix Q which has as rows the program elements qh, h = 1, . . . ,na, simply by the pair
(Q,θ) ∈ {0,1}na×np× [0,2π].

Applying the X-program discussed above to the computational basis state |0np〉 and measuring the
result in the computational basis allows us to see an X-program as a quantum circuit with input |0np〉,
comprised of gates diagonal in the Pauli-X basis, and classical output. Using the random variable X to
represent the distribution of output samples, the probability distribution of outcomes x̃ ∈ {0,1}np is:

P(X = x̃) =

∣∣∣∣∣∣〈x̃|exp

 na

∑
h=1

iθ
⊗

j:Qh j=1

X j

 |0np〉

∣∣∣∣∣∣
2

(1)

Definition 2.2. Given some X-program, an IQP machine is any computational method capable of effi-
ciently returning a sample x̃ ∈ {0,1}np from the probability distribution (1).

2.2 IQP In MBQC

A common framework for studying quantum computation is the MBQC model [33], where a quantum
operation is expressed by a set of measurement angles on an entangled state described by a graph. This
entangled state is built by applying a controlled-Z operation between qubits when there is an edge in
the corresponding graph. The probabilistic nature of the measurements of qubits in this state introduces
some randomness, but this can be corrected for by adjusting the angle of measurement of subsequent
qubits depending on the outcomes of the already performed measurements. The entangling, measuring
and correcting operations on a set of qubits are usually referred to as a measurement pattern [11, 12].

In this work, we will deal with a specific type of graphs, given in the following definition:
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Figure 1: The circuit implementing one term in the sum of equation (1). The input qubits {p j}
np
j=1 are

rearranged so that if #h is the Hamming weight of row h of matrix Q, then for k = 1, . . . ,#h each p̃k
corresponds to one p j such that Qh j = 1 and for k = #h+1, . . . ,np they correspond to the ones such that
Qh j = 0. The ancillary qubit measurement is in the basis {|0θ 〉 , |1θ 〉} defined in expression (2).

a1 a2

p1 p2 p3

Q =

(
1 0 1
0 1 0

)

Figure 2: An example of an IQP graph described by matrix Q. Here, np = 3 and na = 2 while the partition
used is P = [p1, p2, p3] and A = [a1,a2].

Definition 2.3. An undirected bipartite graph, which we refer to as an IQP graph, consists of a bipartition
of vertices into two sets P and A of cardinality np and na respectively.

We may represent such a graph by Q ∈ {0,1}na×np . An edge exists in the graph when Qh j = 1, for
h = 1, . . . ,na and j = 1, . . . ,np. We call the set P primary vertices and the set A ancillary vertices.

A result which is vital to the remainder of this paper, is the following:

Lemma 2.1. A measurement pattern can always be designed to simulate an X-program efficiently.

We can prove that the distribution of (1) may be achieved by initialising np primary qubits in the
states

∣∣p j
〉
= |+〉, na ancillary qubits in the states |ah〉= |+〉, applying Controlled-Z operations between

qubits when there is an edge in the bipartite graph described by the X-program matrix Q and measuring
the resulting state. We form this proof by demonstrating that producing the distribution in equation (1)
can be achieved by inputting the state |+np〉 into a circuit made from composing circuits like the one in
Figure 1 (one for each term of the sum in equation (1)) and measuring the result in the Hadamard basis.
We then argue that all measurements may be delayed to the end of the circuit build from composing those
of Figure 1. The ancillary measurement basis is:

{|0θ 〉 , |1θ 〉}=
{

1√
2

(
e−iθ |+〉+ eiθ |−〉

)
,

1√
2

(
e−iθ |+〉− eiθ |−〉

)}
(2)
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Figure 3: An example of a sequence of one bridge and one break operation.

3 Blind Delegated IQP Computation

We now move to build a method for blindly performing an IQP computation in a delegated setting. We
consider a Client with limited quantum power delegating an IQP computation to a powerful Server. The
novel method that we use in this work is to keep the X-program secret by concealing the quantum state
used. Intuitively, this is done by the Client asking the Server to produce a quite general quantum state
and then move from that one to the one that is required for the computation. If this is done in a blind
way then the Server only has knowledge of the general starting state from which any number of other
quantum states may have been built. Hence, there are three key problems to be addressed:

1. How to transform one state to another.

2. Which general quantum state to transform into the one used for IQP computations.

3. How to do so secretly in a delegated setting.

3.1 Break and Bridge

The break and bridge operations [16, 21] on a graph G̃= (Ṽ , Ẽ), with vertex set Ṽ and edge set Ẽ describe
the operations necessary to solve problem 1.
Definition 3.1. The break operator acts on a vertex v ∈ Ṽ of degree 2 in a graph G̃. It removes v from Ṽ
and also removes any edges connected to v from Ẽ.

The bridge operator also acts on v ∈ Ṽ of degree 2 in a graph G̃. It removes v from Ṽ , removes edges
connected to v from Ẽ and adds an edge between the neighbours of v.

Figure 3 gives an example of multiple applications of the bridge and break operators, while extended
IQP graphs describe the states which solve problem 2.
Definition 3.2. An extended IQP graph is represented by Q̃ ∈ {−1,0,1}na×np . The vertex set contains
A = {a1, ...,ana} and P =

{
p1, ..., pnp

}
while Q̃h j = 0 and Q̃h j = 1 has the same implications, regarding

the connections between these vertices, as in IQP graphs.
We interpret Q̃h j = −1 as the existence of an intermediary vertex bk between vertices p j and ah,

and denote with nb the number of -1s in Q̃. The vertex set includes the bridge and break vertices B =
{b1, ...,bnb} and the edge set includes edges between bk and ah as well as between bk and p j when
Q̃h j = −1. We define a surjective function g for which g(h, j) = k when bk is the intermediate vertex
connected to ah and p j.

An extended IQP graph Q̃ can be built from an IQP graph Q by replacing any number of the entries
of Q with−1. Throughout the remainder of this work we will use tilde notation to represent an extended
IQP graph Q̃ build from an IQP graph Q in this way. Figure 4 displays an example of an extended IQP
graph. By applying a bridge operator to b1 and a break operation to b2 in Q̃ of Figure 4 we arrive at Q of
Figure 2. It is in this sense that an extended IQP graph is ‘more general’ that an IQP graph.

To solve our three problems we must translate these graph theoretic ideas into operations on quantum
states. The following definition allows us to use graphs defined above to describe entanglement patterns.
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a1 a2

p1

b1

p2 p3

b2
Q̃ =

(
−1 0 1
0 1 −1

)

Figure 4: An extended IQP graph described by Q̃ with (na,np,nb) = (2,3,2), P= [p1, p2, p3], B= [b1,b2]
and A = [a1,a2]. Two vertices b1 and b2 are introduced and the function g : Zna×np → Znb is defined as
g(1,1) = 1 and g(2,3) = 2.

Definition 3.3. Consider a matrix G ∈ {−1,0,1}na×np and use function g(h, j) = k to define index
k = 1, . . . ,nb for the elements Gh j = −1. The circuit EG on (na + np + nb) qubits applies controlled-Z
operations between qubits p j and ah if Gh j = 1 and, between qubits bg(h, j) and ah, and, bg(h, j) and p j,
when Gh j =−1.

Now we reformulate a lemma from [16] in order to translate bridge and break operations from graph
theoretical ideas into operations on quantum states.

Lemma 3.1. Consider a quantum state EQ |φ〉 where |φ〉 is arbitrary. If Q̃ is an extended IQP graph
built from Q then there exists a state EQ̃ |ψ〉, which can be transformed into the state EQ |φ〉 through a se-
quence of Pauli-Y basis measurements on qubits and local rotations around the Z axis on the unmeasured
qubits through angles

{
0, π

2 ,π,
3π

2

}
.

The detailed proof of Lemma 3.1 shows us that we can create the following state where p j and ah
are the primary and ancillary qubits connected to bk.

nb

∏
k=1

(
S(−1)sb

k+rb
k

p j ⊗S(−1)sb
k+rb

k
ah

)db
k (

Zrb
k

p j ⊗Zrb
k

a j

)1−dk

EQ |φ〉 (3)

To achieve this, measurements of the qubits corresponding to bridge and break vertices (which we
call bridge and break qubits) of EQ̃ |ψ〉 in the Pauli Y basis are made. The quantity sb

k is the outcome of

this measurement on qubit bk, where said qubit was initialised in the state |bk〉= Y rb
k
√

Y
db

k |0〉. Although
using this method we could only generate EQ

⊗na+np
1 |+〉 (the state built in Lemma 2.1) up to some S

corrections, these may be accounted for by correcting the primary and ancillary measurement bases.
Hence, it is possible to perform an IQP computation by producing the required state in this way.

3.2 Blindness

To address problem 3, we would wish to construct the Ideal Resource of Figure 5 which takes as input
from the Client an IQP computation, (Q,θ), and in return gives a classical output x̃. If the Server is
honest, x̃ comes from the distribution corresponding to (Q,θ). If the Server is dishonest, they can input
some quantum operation E and some quantum state ρB and force the output to the Client into the classical
state E (Q,θ ,ρB). We would like for the Server only to receive a extended IQP graph Q̃ which can be
built from Q, the distribution Q over the possible Q from which Q̃ could be built, and θ . Let us assume
that this is public knowledge.

Blindness is added to the work of Section 3.1 by performing random rotations when initialising the
primary and ancillary qubits. These are corrected by rotating the measurement bases of those qubits;
ensuring the original IQP computation is performed. Intuitively, this randomness provides blindness as
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x̃ =

{
x if honest
E (Q,ρB,θ) if dishonest

S
Q

x̃

E

ρB

Q̃,Q,θ

Figure 5: The ideal blind delegated IQP computation resource.

πA
Q

x̃

ρ

sb

A,Π

sa,sp

πB
E

ρB

ρ ′B

Q̃,Q,θ

R

Figure 6: The real communication protocol. πA is the set of operation performed by the Client, πB are
those of the Server and R is the communication channel (quantum and classical) used by the Client and
the Server in the protocol.

it hides the previous corrections shown in equation (3), which would otherwise give away if a bridge or
break operation was applied to a neighbour. Our real protocol can be seen in Algorithm 1 and Figure 6.

To prove composable security of the proposed protocol we drop the notion of a malicious Server for
that of a global distinguisher which has a view of all inputs and outputs of the relevant resources. To
recreate the view of a malicious Server, we develop a simulator σ interfacing between the ideal resource
S of Figure 5 and the distinguisher in such a way that the latter cannot tell the difference between an
interaction with the ideal resource interfacing with the simulator and the real protocol. We employ the
Abstract Cryptography framework introduced in [26, 32] and teleportation techniques inspired by [13]
to prove security in the case of a malicious Server. We have proven:

πAR ≡S σ (10)

Theorem 3.1. The communication protocol described by Algorithm 1 is information theoretically secure
against a dishonest Server.

We can now be sure that our communication protocol is indistinguishable from an ideal resource
which performs an IQP computation without communicating any information to the Server which is not
already public. This is proven in a composable framework [32, 13] and so can be used as part of future
protocols, as we will do in section 4.
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Algorithm 1 Blind distributed IQP computation

Public: Q̃,Q, θ

Client input: Q
Client output: x̃
Protocol:

1: The Client randomly generates rp,dp ∈ {0,1}np and ra,da ∈ {0,1}na where np and na are the num-
bers of primary and ancillary qubits respectively.

2: The Client generates the states
∣∣p j
〉
= Zrp

j Sdp
j |+〉 and |ah〉 = Zra

h Sda
h |+〉 for j ∈ {1, . . . ,np} and i ∈

{1, . . . ,na}
3: Client creates db ∈ {0,1}nb in the following way: For h = 1, . . . ,na and j = 1, . . . ,np, if Q̃h j = −1

and Qh j = 0, then db
k = 0 else if Q̃h j =−1 and Qh j = 1 then db

k = 1. He keeps track of the relation
between k and (h, j) via the surjective function g : Zna×np → Znb .

4: The Client generates rb ∈ {0,1}nb at random and produces the states |bk〉 = Y rb
k
(√

Y
)db

k |0〉 for k ∈
{1, . . . ,nb}

5: State ρ comprising of all of the Client’s produced states is sent to the Server.
6: The Server implements EQ̃.
7: The Server measures qubits b1, . . . ,bnb in the Y -basis

{∣∣+Y
〉
,
∣∣−Y

〉}
and sends the outcome sb ∈

{0,1}nb to the Client.
8: The Client calculates Πz,Πs ∈ {0,1}np and Az,As ∈ {0,1}na using equations (4), (5), (6) and (7).

Π
z
j = ∑

h,k:g(h, j)=k
rb

k

(
1−db

k

)
− rp

j (4)

Π
s
j = ∑

h,k:g(h, j)=k
(−1)sb

k+rb
k db

k −dp
j (5)

Az
h = ∑

j,k:g(h, j)=k
rb

k

(
1−db

k

)
− ra

h (6)

As
h = ∑

j,k:g(h, j)=k
(−1)sb

k+rb
k db

k −da
h (7)

9: The Client sends A ∈ {0,1,2,3}na and Π ∈ {0,1,2,3}np for the ancillary and primary qubits respec-
tively, where Ah = As

h +2Az
h (mod 4) and Π j = Πs

j +2Π
z
j (mod 4).

10: The Server measures the respective qubits in the basis below for the ancillary and primary qubits
respectively.

S−Ah {|0θ 〉 , |1θ 〉} and S−Π j {|+〉 , |−〉} (8)

The measurement outcomes sp ∈ {0,1}np and sa ∈ {0,1}na are sent to the Client.
11: The Client generates and outputs x̃ ∈ {0,1}np as follows.

x̃ j = sp
j + ∑

h:Qh j=1
sa

h (mod 2) (9)
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4 The Hypothesis Test

4.1 Previous work

The general idea of our Hypothesis Test, building on the work of [35], is that there is some hidden struc-
ture in the program elements, qh, of the X-program, which results in some structure in the distribution
of the outputs, known only to the Client. The Client can use this structure to check the Server’s reply.
A Server possessing an IQP machine can reproduce this structure by implementing the X-program. A
Server not in possession of an IQP machine cannot generate outputs obeying the same rules. We sum-
marise this discussion by three conditions that a hypothesis test using this method must meet.

1.1 A Client asks a Server to perform a hard to classically simulate IQP computation.

1.2 The Client can check the solution to this computation because they know some secret structure
that makes this checking processes efficient.

1.3 The Server must be unable to uncover this structure in polynomial time.

The particular ‘known structure’ of the output used in [35] to satisfy 1.2 is its bias.

Definition 4.1. If X is a random variable taking values in {0,1}np and s ∈ {0,1}np then the bias of
X in the direction s is P

(
X · sT = 0

)
where the product is performed modulo 2. Hence, the bias of a

distribution in the direction s is the probability of a sample from the distribution being orthogonal to s.

To calculate the bias of X in direction s ∈ {0,1}n, we form the linear code Cs by selecting all rows,
qh, of the X-program, (Q,θ) ∈ {0,1}na×np × [0,2π], such that qh · sT = 1. We form, from them, the
matrix, Qs, set as the generator matrix of Cs. Defining ns as the number of rows of Qs allows us to
understand the following expression derived in [35].

P
(
X · sT = 0

)
= Ec∼Cs

[
cos2 (θ (ns−2 ·#c))

]
(11)

Hence, the bias of an X-program in the direction s depends only on θ and the linear code defined
by the generator matrix Qs. One can now imagine a hypothesis test derived from this. Although the X-
program to be implemented needs to be made public, the direction s which will be used for checking, will
be kept secret. This gives a Client, with the computational power to calculate the quantity of expression
(11), the necessary information to compute the bias, but does not afford the Server the same privilege.

What we want to show is that the only way for the Server to produce an output with the correct bias
is to use an IQP machine. If the Server could uncover s then they could calculate the value of expression
(11) and return vectors to the Client which are orthogonal to s with the correct probability. We specialise
the conditions mentioned at the beginning of this section to this particular method.

2.1 The X-Program sent to a Server represents an IQP computation that is hard to classically simulate.

2.2 It must be possible for a Client, having knowledge of a secret s and the X-program, to calculate
the quantity of expression (11).

2.3 The knowledge of the Server must be insufficient to learn the value of s.

In [35] the authors develop a protocol for building an X-program and a vector s performing this
type of hypothesis test. The code Cs used is a quadratic residue code with θ = π

8 and condition 2.1
is conjectured to be satisfied by X-program matrices generating this code space. This conjecture is
supported by giving a classical simulation that is believed to be optimal and achieves maximum bias value
0.75; different from that expected from an IQP machine. Condition 2.2 is satisfied by the construction
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in [35], by proving that the bias value, which is cos2
(

π

8

)
for their choice of X-program and s, can be

calculated in polynomial time.
The way in which condition 2.3 is addressed in [35] relies on the fact that the right-hand side of

equation (11) is equal for all generator matrices in a matroid [31].

Definition 4.2. A h-point binary matroid is an equivalence class of matrices with h rows, defined over
F2. Two matrices, M1 and M2, are said to be equivalent if, for some permutation matrix R, the column
echelon reduced form of M1 is the same as the column echelon reduced form of R ·M2 (In the case where
the column dimensions do not match, we define equivalence by deleting columns containing only 0s after
column echelon reduction).

In order to move to a new matrix within the same matroid, consider the right-multiplication with
matrix A on Q. Notice that qhsT = (qhA)

(
A−1sT

)
. Rows which were originally non-orthogonal to s are

now non-orthogonal to A−1sT , hence we can locate Qs in Q by using A−1sT . A way to hide s is therefore
to randomise it with such an operation A. We now understand what to do to the X-program we are
considering, so that the value of the bias does not change. To increase the hiding of s, the matrix might
also include additional rows orthogonal to s, which do not affect the value of the bias. The combination
of matrix randomisation and the addition of new rows makes it hard, as conjectured in [35], up to some
computational complexity assumptions, for the Server to recover s from the matrix that it receives. It is
now simply a matter for the Server to implement the X-program and for the Client to check the bias of
the output in the direction s. This is the approach used by [35] to address condition 2.3.

4.2 Our Protocol

The main contribution of this work is to revisit condition 2.3.

Theorem 4.1. Algorithm 2 presents an information-theoretically secure solution to condition 2.3.

In Algorithm 2 we provide a hypothesis test that uses Algorithm 1 to verify quantum superiority. By
using the blind IQP computation resource of Section 3.2 we have solved condition 2.3 but do so now
with information theoretic security as opposed to the reliance on computational complexity assumptions
used by [35]. This is true because the Server learns only the distribution Q over the possible set of
graphs Q. By setting Q = QsA, Algorithm 2 develops a bijection mapping ŝ ∈ {0,1}np−1 to a unique
matrix Q ∈ {0,1}na×np . So Q is equivalent to the distribution from which ŝ is drawn. In this case it is
the uniform distribution over a set of size 2np−1.

5 Discussion, Conclusion and Future Work

We have presented a new certification technique for IQP machines which can be run by a client able to
prepare single-qubit Pauli eigenstates. By giving the Client minimal quantum abilities we can remove
computational restrictions placed on the Server in previous work [35] and, instead, prove information-
theoretical security against an untrusted Server.

There are several advantages of using this tailored verification protocol for IQP computations, rather
than a straightforward verification in a universal quantum computing model [16, 24]. The latter requires
higher precision in the manipulation of single qubits from the client (use of states other than single-qubit
Pauli eigenstates) and significantly more quantum communication and processing for the verification
technique. Although the qubit consumption there is still, as in this work, linear in the size of the compu-
tation, in early machines the constant factor will likely be important. Further, asking a Server to perform
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Algorithm 2 Our hypothesis test protocol
Input: na prime such that na +1 is a multiple of 8.
Client output: o ∈ {0,1}
Protocol:

1: Set np =
na+1

2

2: Take the quadratic residue code generator matrix Qr ∈ {0,1}na×(np−1)

3: Let Qs ∈ {0,1}na×np be Qr with a column of ones appended to the last column.
4: Pick ŝ ∈ {0,1}np−1 chosen uniformly at random.
5: Define the matrix A ∈ {0,1}np×np according to equation (12).

Ah, j =


1 if h = j
0 if h 6= j and j < np

ŝh if j = np and h < np

(12)

6: Set Q = QsA and θ = π

8 .
7: Set Q̃ to be the matrix Qr with a column of −1 appended.
8: Set Q to be the uniform distribution over all possible Q for different ŝ.
9: Perform the IQP computation Q using Algorithm 1 with inputs Q, Q̃, Q and θ and outputs x̃ and ρ ′B.

10: Let s ∈ {0,1}np be the vector with entries all equal to zero with the exception of the last which is set
to one.

11: Test the orthogonality of the output x̃ against A−1sT setting o = 0 if it is not orthogonal and o = 1 if
it is orthogonal.

an IQP computation using a model that is universal for quantum computation would require the Server
to create large cluster states and perform measurement that might lie far beyond its IQP capabilities.

IQP circuits are important as they may prove easier to implement experimentally compared to uni-
versal quantum computers. Due to the commutativity of the gates it is theoretically possible to perform
an IQP computation in one round of measurements. Our protocol requires a two round MBQC compu-
tation which we believe not to be a significant additional requirement and which provides an important
improvement compared to the implementation requirements of universal quantum computations. This
could make our scheme implementable, for a small number of qubits, in the near term, and so a future
avenue of research would be to study this hypothesis test protocol under realistic experimental errors,
following similar examples of work in this direction [8, 23].

The demand for the Server to have memory to support a two round MBQC computation means
machines capable of passing the original test of [35] might not be able to pass that of this work. There
they do not restrict the architectures that the Server can use, which comes at the high cost of placing
computational restrictions on the Server [35]. Our requirement that the Server can perform two round
MBQC allows us to achieve information-theoretic security.

Finally, given that Gaussian quantum subtheory can be seen as a continuous variable analogue of
the stabiliser formalism [37, 4, 3], a natural extention would be a continuous variable analogue of our
protocol where the Client prepares only Gaussian states.



D.Mills, A.Pappa, T.Kapourniotis & E.Kashefi 11

6 Acknowledgements

The authors would like to thank Andru Gheorghiu and Petros Wallden for enlightening discussions and
feedback. This work was supported by grant EP/L01503X/1 for the University of Edinburgh School
of Informatics Centre for Doctoral Training in Pervasive Parallelism, from the UK Engineering and
Physical Sciences Research Council (EPSRC) and by grants EP/K04057X/2, EP/N003829/1 and EP/
M013243/1, as well as by the European Union’s Horizon 2020 Research and Innovation program under
Marie Sklodowska-Curie Grant Agreement No. 705194.

References

[1] Scott Aaronson & Alex Arkhipov (2011): The computational complexity of linear optics. In: Proceedings of
the forty-third annual ACM symposium on Theory of computing, ACM, pp. 333–342.

[2] Panos Aliferis, Frederico Brito, David P DiVincenzo, John Preskill, Matthias Steffen & Barbara M Terhal
(2009): Fault-tolerant computing with biased-noise superconducting qubits: a case study. New Journal of
Physics 11(1), p. 013061.

[3] Stephen D Bartlett, Terry Rudolph & Robert W Spekkens (2012): Reconstruction of Gaussian quantum
mechanics from Liouville mechanics with an epistemic restriction. Physical Review A 86(1), p. 012103.

[4] Stephen D Bartlett, Barry C Sanders, Samuel L Braunstein & Kae Nemoto (2002): Efficient classical simu-
lation of continuous variable quantum information processes. Physical Review Letters 88(9), p. 097904.

[5] Charles H Bennett & Gilles Brassard (1984): Quantum cryptography: Public key distribution and coin
tossing. In: Proceedings of the IEEE International Conference on Computers Systems and Signal Processing,
1984, pp. 175–179.

[6] Juan Bermejo-Vega, Dominik Hangleiter, Martin Schwarz, Robert Raussendorf & Jens Eisert (2017): Archi-
tectures for quantum simulation showing quantum supremacy. arXiv preprint arXiv:1703.00466.

[7] Michael J Bremner, Richard Jozsa & Dan J Shepherd (2010): Classical simulation of commuting quantum
computations implies collapse of the polynomial hierarchy. In: Proceedings of the Royal Society of London
A: Mathematical, Physical and Engineering Sciences, The Royal Society, p. rspa20100301.

[8] Michael J Bremner, Ashley Montanaro & Dan J Shepherd (2016): Achieving quantum supremacy with sparse
and noisy commuting quantum computations. arXiv preprint arXiv:1610.01808.

[9] Michael J Bremner, Ashley Montanaro & Dan J Shepherd (2016): Average-case complexity versus approxi-
mate simulation of commuting quantum computations. Physical review letters 117(8), p. 080501.

[10] Anne Broadbent, Joseph Fitzsimons & Elham Kashefi (2009): Universal blind quantum computation. In:
Foundations of Computer Science, 2009. FOCS’09. 50th Annual IEEE Symposium on, IEEE, pp. 517–526.

[11] Vincent Danos & Elham Kashefi (2006): Determinism in the one-way model. Physical Review A 74(5), p.
052310.

[12] Vincent Danos, Elham Kashefi & Prakash Panangaden (2007): The measurement calculus. Journal of the
ACM (JACM) 54(2), p. 8.

[13] Vedran Dunjko, Joseph F Fitzsimons, Christopher Portmann & Renato Renner (2014): Composable security
of delegated quantum computation. In: International Conference on the Theory and Application of Cryptol-
ogy and Information Security, Springer, pp. 406–425.

[14] Artur K Ekert (1991): Quantum cryptography based on Bell’s theorem. Physical review letters 67(6), p. 661.

[15] Richard P Feynman (1982): Simulating physics with computers. International journal of theoretical physics
21(6), pp. 467–488.

[16] Joseph F Fitzsimons & Elham Kashefi (2012): Unconditionally verifiable blind computation. arXiv preprint
arXiv:1203.5217.



12 Information Theoretically Secure Hypothesis Test for the IQP Machine

[17] Xun Gao, Sheng-Tao Wang & L-M Duan (2017): Quantum supremacy for simulating a translation-invariant
Ising spin model. Physical Review Letters 118(4), p. 040502.

[18] Bryan T Gard, Keith R Motes, Jonathan P Olson, Peter P Rohde & Jonathan P Dowling (2015): An intro-
duction to boson-sampling. From atomic to mesoscale: The role of quantum coherence in systems of various
complexities. World Scientific Publishing Co. Pte. Ltd, pp. 167–92.

[19] IM Georgescu, S Ashhab & Franco Nori (2014): Quantum simulation. Reviews of Modern Physics 86(1), p.
153.

[20] Lov K Grover (1996): A fast quantum mechanical algorithm for database search. In: Proceedings of the
twenty-eighth annual ACM symposium on Theory of computing, ACM, pp. 212–219.

[21] Marc Hein, Jens Eisert & Hans J Briegel (2004): Multiparty entanglement in graph states. Physical Review
A 69(6), p. 062311.

[22] Matty J Hoban, Joel J Wallman, Hussain Anwar, Naı̈ri Usher, Robert Raussendorf & Dan E Browne (2014):
Measurement-based classical computation. Physical review letters 112(14), p. 140505.

[23] Theodoros Kapourniotis & Animesh Datta (2017): Nonadaptive fault-tolerant verification of quantum
supremacy with noise. arXiv preprint arXiv:1703.09568.

[24] Elham Kashefi & Petros Wallden (2017): Optimised resource construction for verifiable quantum computa-
tion. Journal of Physics A: Mathematical and Theoretical 50(14), p. 145306.

[25] Emanuel Knill & Raymond Laflamme (1998): Power of one bit of quantum information. Physical Review
Letters 81(25), p. 5672.

[26] Ueli Maurer & Renato Renner (2011): Abstract cryptography. In: In Innovations in Computer Science, pp.
1–21.

[27] Daniel Mills, Anna Pappa, Theodoros Kapourniotis & Elham Kashefi (2017): Information Theoretically Se-
cure Hypothesis Test for Temporally Unstructured Quantum Computation. arXiv preprint arXiv:1704.01998.

[28] Tomoyuki Morimae, Keisuke Fujii & Joseph F Fitzsimons (2014): Hardness of classically simulating the
one-clean-qubit model. Physical review letters 112(13), p. 130502.

[29] Maarten Van den Nest, Wolfgang Dür & Hans J Briegel (2008): Completeness of the classical 2D Ising model
and universal quantum computation. Physical review letters 100(11), p. 110501.
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