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Abstract

In this paper, we propose a Quantum variation of combinatorial games, generalizing the
Quantum Tic-Tac-Toe proposed by Allan Goff [2006]. A combinatorial game is a two-player
game with no chance and no hidden information, such as Go or Chess. In this paper, we consider
the possibility of playing superpositions of moves in such games. We propose different rulesets
depending on when superposed moves should be played, and prove that all these rulesets may
lead similar games to different outcomes. We then consider Quantum variations of the game
of Nim. We conclude with some discussion on the relative interest of the different rulesets.

1 Introduction

Quantum information theory and its interpretations required the introduction of new concepts such
as superposition, entanglement, etc. To shed a new light on these concepts, it seems relevant to
present them within the frame of a game. Moreover, introducing these phenomena in combinatorial
game theory induces new families of games that had no natural motivation beforehand.

Quantum variations of “economic games” (with partial information) were already studied, see
[10] for a discussion on that matter. However, to the best of our knowledge, the only combinatorial
game with a tentative quantum variation is Tic-Tac-Toe. It was considered in [6], “as a metaphor
for the counter intuitive nature of superposition exhibited by quantum systems” and studied in
[9, 7]. In this paper, we want to propose a general way to provide a Quantum variation of any
combinatorial game. Moreover, we want to improve the game interpretation of the measurement,
in order to make it closer to what happens in quantum information theory. The main idea consists
in allowing a player to play “a superposition” of moves. Nevertheless, there are various ways to
introduce Quantum variations of a combinatorial game in general, we consider some of them and
argue on the interest of the different interpretations.

After defining some useful notions from classical combinatorial game theory, we propose a def-
inition of Quantum variations of a game, with different rulesets. We then prove in Section 4 that
each pair of rulesets differ for some game. Finally, we study the different rulesets on the game of
Nim which is a classical game for combinatorial game theory.
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2 Reminders on Classical Combinatorial Game Theory

A combinatorial game is a game with no chance and no hidden information, opposing two players,
Left and Right. In Combinatorial Game Theory (CGT), a game is described by a position (e.g.
the setting of the pieces on a board) and a ruleset, that describes the legal moves for each position
and the positions to which these moves lead. We here consider short games, that is games with no
possible infinite run and a finite number of moves. A classical example of such games is the game
of Nim, that we consider often in the following. It is a two player game played on heaps of tokens.
Each player alternately take any (positive) number of tokens from a single heap. When a player is
unable to move (i.e. no heaps have any token left), he loses.

To have a synthetic description of a game, a move is generally described in a general setting,
independent of the current position (e.g. a bishop moves along a diagonal in Chess). In the
following, we need a description of a move that can be interpreted with no ambiguity in different
positions of the game. In a formal way, we describe a combinatorial game with a set G of positions
and an alphabet Σ of all possible moves. Then a Ruleset is defined as a mapping :

Γ : G ˆ Σ Ñ G Y tnullu

where null means that the move is not legal from that position in the game.
For example, in the game of Nim, we denote Nimpx1, . . . , xkq the position with k heaps of

x1, . . . , xk tokens. If the heaps contain at most n tokens, the alphabet of moves can be defined by
pairs of integers: Σ “ t1, . . . , ku ˆ t´n, . . . ,´1u, a pair pi,´jq meaning we try to remove j tokens
from heap number i. (In Partisan games where players have different moves, the moves m P Σ are
differentiated by their player.)

Under normal convention (that we follow here), any player that is unable to move from a
position loses. A combinatorial game (opposing two players, Left and Right) may have four possible
outcomes: N when the first player can force a win, P when the second player can force a win, L
when Left can force a win no matter who moves first and R when Right can force a win no matter
who moves first. See [12] for more details.

Another fundamental concept in classical CGT is the sum of two games. When playing on a
sum, each player plays a move in one of the summand, until no moves is legal in any game. With
our previous setting, from two rulesets

Γ1 : G1 ˆ Σ1 Ñ G1 Y tnullu

Γ2 : G2 ˆ Σ2 Ñ G2 Y tnullu

we define the ruleset Γ1`2 of the sum (assuming Σ1 X Σ2 “ H) by

Γ1`2 : G1 ˆ G2 ˆ pΣ1 Y Σ2q Ñ G1 ˆ G2 Y tnullu

pG1, G2,mq Ñ

$

’

&

’

%

pΓ1pG1,mq, G2q if m P Σ1 and Γ1pG1,mq ‰ null

pG1,Γ2pG2,mqq if m P Σ2 and Γ2pG2,mq ‰ null

null otherwise.

Recall that two games G1 and G2 are said to be equivalent, denoted G1 ” G2, if for any third
game G3, G1`G3 as the same outcome as G2`G3. Observe that if all options of a game Γ1pG1,mq
are equivalent to the corresponding option of γ2pG2,mq, the two games are equivalent. The value
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of a game is its equivalence class. In particular, ˚k denotes the value of a single Nim heap of k
tokens (we use notation with ˚0 “ 0 and ˚1 “ ˚). In impartial games under normal convention, all
games are equivalent to a Nim heap. Then the value of a game can be computed from the values
of its options by the mex -rule, i.e. the value of an impartial game is ˚x where x is the smallest
non-negative integer such that ˚x is not among the options.

The birthday of a game is the maximum number of moves that can be played on the game.

3 Definition of a Quantum game

Figure 1: Two superposed moves played on a game of Nim.

From a classical game, we define a Quantum variation of the game (that can be seen as a
modified ruleset) where players have to play Q-moves. A Q-move consists in a superposition (seen
as a set) of classical moves. If the Q-move is reduced to a single classical move, we call it an
unsuperposed move. As soon as a superposition of moves is played, the game is said in Quantum
state. For each sequence of Q-moves, a run is a choice of a classical move among each superposed
move of the sequence. If the choice forms a legal sequence of moves in the corresponding classical
game, then the position obtained after this run is called a realisation of the game. For example, in
Figure 1, two superposed moves are played on a game of Nim, leading to only three realisations,
since the sequence (1,-3)–(1,-2) is not legal.

In a Quantum state, a classical move is considered legal if there exists at least one realisation of
the game where this move is legal (in the classical sense). A superposition of moves is legal if each
of its superposed classical moves are legal (possibly in different realisations). Observe that applying
a move makes disappear all realisations inconsistent with that move. The game ends when the next
player has no legal moves.

It should be noted here that with this setting, the way the Ruleset is defined influences the
behaviour of its Quantum variation. This is why we cannot use simply the set of options of a
position to describe a game, as it is in classical CGT. Moves need to be labeled and to have
interpretations in different positions. In particular, if we choose to describe the possible moves by
the resulting position, then the game would become much simpler, since the positions obtained by
any legal run would depend only of the last move.
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3.1 Quantum Rulesets definition

Depending on when unsuperposed moves are considered legal, we here consider five rulesets.

Ruleset A: Only superpositions of at least two (classical) moves are allowed.

Ruleset B: Only superpositions of at least two moves are allowed, with a single exception: when
the player has only one possible move within all realisations together, he can play it as an
unsuperposed move.

Ruleset C: Unsuperposed moves are allowed if and only if they are valid in all possible realisations.

Ruleset C’: a player may play an unsuperposed moves if and only if it is valid in all possible
realisations where he still has at least one classical move.

Ruleset D: Unsuperposed moves are always allowed (seen as the superposition of two identical
moves).

Note that Ruleset C’ is the least permissive ruleset that is more permissive than Ruleset B and
Ruleset C. We get the following lattice of permissivity:

A

B C

C’

D

Remark that in all the above rulesets, the availability of a move depends only on the existence
of a realisation, independently on how the realisations are correlated. Therefore, the history may
be ignored, implying the following observation.

Observation 1 Independently of the sequence of moves, if two games are superpositions of the
same realisations, the possible sequences of legal moves are identical. (In CGT, such games are
said to be equal.)

From this observation, we deduce that a position of a Quantum game is fully described by the
possible realisations of the earlier moves, which form a multiset of classical positions. Since the
multiplicity of a classical position is not important in all the above rulesets, we describe such a posi-
tion as a set of superposed classical positions, denoted

7

7G1, . . . , Gn

?

?. For example the superposition

of positions G and G1 is denoted
7

7G,G1
?

?, and the unsuperposed position G as the set
7

7G
?

?. When
we discuss on a specific Ruleset, e.g. Ruleset A, we use the letter as a subscript to the notation:
7

7G1, . . . , Gn

?

?

A
.

Legal classical moves in a superposition
7

7G1, G2, . . . , Gn

?

? now are any m P Σ such that at least
one of ΓpGi,mq is not null. In that case, we get the Quantized ruleset defined on PpGqˆPpΣq by

7

7G1, . . . , Gn

?

?ˆ tm1, . . . ,mku Ñ
7

7 ΓpGi,mjq | 1 ď i ď n, 1 ď j ď k,ΓpGi,mjq ‰ null
?

?
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3.2 Sum of Quantum games and Quantum sum of games

Note that given this setting, a Quantum combinatorial game can be seen as a combinatorial game
with a particular ruleset. We can thus sum a Quantum combinatorial game with another Quantum
combinatorial game, or with a classical game, following the classical game sum (each player plays
a move in one of the summand, until no moves is legal in any game). In such a sum of games, no
superposition of moves distributed among the terms are allowed.

However, we can also consider the Quantum variation of the sum of two games, thus allowing
superposition of moves distributed among the operands of the sum. Then we get

7

7G
?

?`
7

7H
?

? ‰
7

7G`H
?

?

Observe that the Nim product b, as defined in [5, 12], allows to play a move on one operand or
on both. In Ruleset D, where allowed moves are superpositions of any number of classical moves,
we then obtain

7

7G`H
?

?

D
“

7

7G
?

?

D
b

7

7H
?

?

D
.

This is not true for other Rulesets because in
7

7G ` H
?

?, you could play only one element of the

superposition in G while it might not be a legal move in
7

7G
?

?.

3.3 To play the game :

If we want to play a Quantum variation of a game without computing all the realizations of the
game at each move, it becomes difficult to know whether a move is legal or not. We suggest that
each player at his turn announces the moves he wants to play. If his opponent suspects this move
is not legal, he can challenge the player. Then the player must prove his move was legal: he must
exhibit a run for each of the classical moves he played. If he manages to do so, then he wins,
otherwise he loses. Note anyway that this does not change the outcome of the game: if a player
can ensure a win in any of these settings, he can ensure a win in the other too.

3.4 Link with Quantum theory

In recent works, Abramsky and Bandenburger[1] gave a mathematical definition of contextuality,
that modelize a more general setting than what was obtained with empirical models. Then Acin et
al.[2] showed that these phenomena can be exhibited in a pure combinatorial setting, representing
contextuality scenarii with hypergraphs. Somehow, our proposal of Quantum combinatorial games
join in with this theoretical approach of contextuality.

Quantum combinatorial games have the following interpretation in quantum theory : the players
act on a quantum system. Each move of a player consists in applying a unitary operator to the
system, similarly to placing a gate chosen from a fixed set in a quantum circuit (as in the circuit
model, see [11]). If at some point, the move of some player brings the state of the system into a
losing subspace, the player loses.

To decide if the state is in the losing subspace, one may apply a projective measurement. This
produces a probabilistic game where each player can at best ensure a probability of winning. To
recover the combinatorial version, we need to consider winning in a possibilistic way : a player loses
at the first step for which the projective measurement puts the state in the losing subspace with
probability 1. This could be interpreted as allowing the player to replay the sequence of unitaries
and the measure until he manages to prove his system is not in the losing subspace.
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Note that when a game is in a quantum state, the possible classical states in the superposition
can interact with each other and a superposition of moves can act on different elements. Therefore,
like in quantum theory, being in a superposition of positions is different than being in a probability
distribution over states.

As an illustration, it is possible to reproduce with our games the following behavior. From the
basis states |0y and |1y, applying the unitary Hadamard operator H leads to the superpositions
|0y` |1y and |0y´ |1y respectively (We omit the normalization coefficient). These two states behave
exactly like a random bit under measure. However, applying a second time the Hadamard operator
H, we recover the initial quantum state.

In the Quantum version of Nim, suppose that a player plays the superposed move pp1,´1q, p2,´1qq
on Nimp1, 1, 2q. It produces the superposition

7

7Nimp0, 1, 2q,Nimp1, 0, 2q
?

?. If the second player plays

also the same superposed move pp1,´1q, p2,´1qq, it results in an unsuperposed game
7

7Nimp0, 0, 2q
?

?

and becomes a deterministic composition of the two moves. This way of obtaining a deterministic
move out of two superposed moves reminds much of the previous behavior of the Hadamard opera-
tor. In addition, the move pp1,´1q, p2,´1qq is not a legal move in any of the games

7

7Nimp1, 0, 2q
?

?

A

and
7

7Nimp0, 1, 2q
?

?

A
. So if one wants to see this definition of a quantum game as a probabilistic

game, he needs to consider all the states in the probability distribution to determine the legal
moves. Therefore, a probabilistic definition of such a game would be very artificial. Here is an
other way of observing this problem: playing either on

7

7Nimp1, 0, 2q
?

?

A
or on

7

7Nimp0, 1, 2q
?

?

A
, every

move produces an element of the superposition that has maximal heapsize one. Thus a property
that is true when playing on each of the elements of a superposition may be false when playing on
the superposition.

4 Difference of rulesets

We now give some examples showing that all the rulesets are non-equivalent for some games.

Example 1 The first example is based on the octal game 0.6. This is a game played on a line of
pins. Each player at his turn must remove a single pin that is not isolated (i.e. it still has at least
one adjacent pin). We number the pins from 1 to n according to their position on the line. The
octal game rule specifies that the move i becomes illegal when both ti´ 1, i` 1u have been played.

We consider game 0.6 played on a line of four pins.

• the game has outcome P in the classical game.

• it has outcome N in all other rulesets. A winning first move is p1, 4q. Then whatever the
answer to this move is, he can win playing 2, 3 or p2, 3q.

Example 2 Our second example is played on the game Domineering. This game is played on a
subset of squares from a grid. Left plays vertical dominoes (two adjacent squares) and right plays
horizontal dominoes. A move is described by the squares the played domino occupies.

We play Domineering on the following board:
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• The game has outcome R in the classical game. Indeed, if Left plays first, Right can still
play a horizontal domino, while Right can prevent Left from being able to play with his first
move. Right can use the same strategy in Ruleset D. Right is the only one who can play
a superposition of moves, that makes him win in Ruleset A. Moreover, playing his winning
move in the classical game, he wins in Ruleset C and Ruleset C’. If Left starts in Ruleset
C or Ruleset C’, he must play an unsuperposed move and Right can answer also with an
unsuperposed move.

• In Ruleset B Right playing first is forced to play the superposed move, to which Left can
answer. Left still loses when playing first.

Example 3 We consider the game called Hackenbush. We define here a restricted version that
suffice to illustrate our example. The game is played on a set of vertical paths composed of blue
and red1 edges. At his turn Left selects a blue edge and remove it together with all the edges above
it. Right does the same with a red edge. The game ends when a player has no edge to select. We
label each edge of the game, and define a move by the label of the edge selected.

We play Hackenbush on the following game

1

2 3

a b

In that game, in Ruleset A, Right cannot play after Left played twice pa, bq and this is the only
ruleset when Left wins playing first. The sequence p2, 3q-paq-p1, 3q-pbq allows an extra move p1q only
in Ruleset C’ and Ruleset D.

• the game has outcome P in the classical game as well as in Ruleset C.

• it has outcome L in Ruleset A.

• it has outcome R in Ruleset B, Ruleset C’ and Ruleset D.

Example 4 We play Nim on two heaps of two tokens, i.e. Nimp2, 2q. This is N in Ruleset D but
P in Ruleset C’. The key observation is that the sequence pp1,´1q, p2,´1qq – pp1,´2q, p2,´1qq –
p1,´2q is winning for the first player in Ruleset D but the last move is not allowed in Ruleset C’.

With these example, we deduce that all the above rulesets are pairwise different, i.e. for each
pair of rulesets, there exists a game whose outcomes differ. Note that it is not necessary to use
partisan games to exhibit the difference of the rulesets, but the above games were convenient to
keep small examples.

5 Results

Definition 2 A game G1 in a superposition
7

7G1, G2, . . . , Gn

?

? is said to be covered by G2, . . . , Gn

if either G1 has no legal (classical) moves, or for every move m P Σ that is legal on G1, there exist a
game Gi, 2 ď i ď n such that m is legal on Gi and Γ1pG1,mq is covered by Γ2pG2,mq, . . . ,ΓnpGn,mq.

1We draw red edges with parallel lines.
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Observe for example that a Nim heap with k tokens is covered by a Nim heap with more than
k tokens, which can easily be proved inductively.

Theorem 3 In Ruleset A, Ruleset B and Ruleset D, if a superposition of games
7

7G1, G2, . . . , Gn

?

?

is such that G1 is covered by G2, . . . , Gn, then
7

7G1, G2, . . . , Gn

?

? ”
7

7G2, . . . , Gn

?

?.

Proof: We prove the result by induction on the birthday of G1. First observe that if G1 has no
possible moves, then the equivalence is clear in Ruleset A, Ruleset B and Ruleset D (but not in
Ruleset C and Ruleset C’). Now suppose the result is true for every game with birthday less than
G1’s birthday. Consider a move pm1, . . . ,mkqkě1. Then the game obtained is

7

7ΓpGi,mjq, 1 ď i ď

n, 1 ď j ď k,ΓpGi,mjq ‰ null
?

?. For each 1 ď j ď k such that ΓpG1,mjq ‰ null, ΓpG1,mjq is
covered by Γ2pG2,mjq, . . . ,ΓnpGn,mjq, so it can be removed from the superposition. Thus, every
option of

7

7G1, G2, . . . , Gn

?

? is equivalent to the corresponding option of
7

7G2, . . . , Gn

?

? and we have
equivalence. l

From our above observation on the Nim heaps, we get:

Corollary 4 In Rulesets A,B,D, the value of a superposition of a single Nim heap in different
states depends only on the largest heap in the superposition.

Corollary 5 In Ruleset A, Ruleset B and Ruleset D, the Nim game on at most k heaps is equivalent
to the corresponding game where only superposition of at most k moves are allowed.

Proof: We prove the result by induction on the birthday of the game: Consider a superposition of
Nim heaps on at most k heaps. Consider a superposed move from this game, say pph,´ihqihPIh,1ďhďk

(i.e. the superposed removal of all numbers of token in Ih for each heap h). Theorem 3 shows
thatthis move is equivalent to the move pph,´minpIhqq1ďhďkq, which is a superposition of at most
k moves. In the case when only one h is such that Ih is non empty (and unsuperposed moves are
not legal), we also get that it is equivalent to the move pph,´minpIhq, ph,´minpIhq ´ 1qq. l

We remark that this corollary is not true in the case when the number of heaps is larger than
k. For example, let A|2 denote Ruleset A where only superpositions of two moves are allowed.

We have that all the options of
7

7Nimp1, 1, 1q
?

?

A|2
are equivalent to

7

7Nimp1, 0, 1q,Nimp0, 1, 1q
?

?

A|2
(by

permutation of the heaps). This position has two options, namely
7

7Nimp0, 0, 1q
?

?

A|2
(by the move

p1,´1q, p2,´1qq) which has value 0 and
7

7Nimp1, 0, 0q,Nimp0, 1, 0q,Nimp0, 0, 1q
?

?

A|2
(by any other

move) which has value ˚. Thus
7

7Nimp0, 1, 1q,Nimp1, 0, 1q
?

?

A|2
” ˚2 and

7

7Nimp1, 1, 1q
?

?

A|2
” 0.

However playing the only possible superposition of three moves on
7

7Nimp1, 1, 1q
?

?

A
leads to

the position
7

7Nimp0, 1, 1q,Nimp1, 0, 1q,Nimp1, 1, 0q
?

?

A
. All options of this position are equivalent

to
7

7Nimp0, 0, 1q,Nimp0, 1, 0q,Nimp1, 0, 0q
?

?

A
which has value ˚. As a consequence, we obtain that

7

7Nimp0, 1, 1q,Nimp1, 0, 1q,Nimp1, 1, 0q
?

?

A
” 0 and finally

7

7Nimp1, 1, 1q
?

?

A
” ˚.

In the rest of this section, we get interested in the values of Quantum single heaps of Nim under
the different rulesets.

5.1 Values of single Nim heaps

Lemma 6 In Ruleset A, the value of a superposition of Nim heaps has value ˚pk ´ 1q if and only
if its largest heap has size k ě 1, i.e.

7

7Nimpi1q, . . . , Nimpi`q
?

?

A
” ˚pk ´ 1q where k “ max

1ďjď`
pijq
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Proof: We prove the result by induction. If the largest heap is of size 1, then the game is
7

7Nimp1q
?

?

or
7

7Nimp0q,Nimp1q
?

?. No superposed move are possible, thus the game has value 0.
Assume now the lemma is verified up to k. Then we claim a position with as largest heap k` 1

has value ˚k. First, all the legal moves are of the form p1,´xiq for some 1 ď xi ď k ` 1. Denote
x “ minpxiq. The move brings to a position whose largest heap is of size k ´ x ` 1, which have
value ˚pk ´ xq by induction. This proves the Lemma. l

Lemma 7 In Ruleset B, the value of a superposition of Nim heaps of size k and less has value :

7

7Nimpi1q, . . . , Nimpi`q
?

?

B
”

$

’

&

’

%

0 if k “ 2

˚ if k “ 1

˚pk ´ 1q otherwise

where k “ max
1ďjď`

pijq

Proof: We prove the result by induction. If the largest heap is of size 1, then the game is
7

7Nimp1q
?

?

or
7

7Nimp0q,Nimp1q
?

?. There is a single legal move, which is the unsuperposed move p1,´1q that lead

to
7

7Nimp0q
?

?. Thus the game as value ˚. If the largest heap is of size 2, then only the superposed

move pp1,´1q, p1,´2qq is legal, which brings to the game
7

7Nimp0q,Nimp1q
?

? of value ˚. Thus it has
value 0.

Assume now the lemma is verified up to k ě 2. Then we claim a position whose largest heap
has size k ` 1 has value ˚k. First, all the legal moves are superpositions of the form p1,´iqiPI
with I Ă r1, k ` 1s. The move brings to a position whose largest heap is of size k ´ j ` 1 where
j “ minti P Iu, which has value ˚pk´ iq if k´ i ě 2, 0 if k´ i “ 1 and ˚ if k´ i “ 0, by induction.
This proves the Lemma. l

Lemma 8 In Ruleset D, the value of a superposition of Nim heaps has value ˚k if and only if its
largest heap has size k, i.e.

7

7Nimpi1q, . . . , Nimpi`q
?

?

D
” ˚k where k “ max

1ďjď`
pijq

Proof: Again the proof works by induction. In Ruleset D, a superposition with largest heap of
size k has value at least ˚k since all unsuperposed moves are legal, and all its options have value at
most ˚pk ´ 1q by induction. l

In contrast with what happens in the previous rulesets, the value of a superposition of Nim
Heaps in Ruleset C does not depend only on the size of the maximum heap, as shows the following
lemma.

Lemma 9 In Ruleset C, a superposition of Nim heaps with maximum size k has value ˚pk ´ 1q,
unless there is only one element in the superposition in which case the game has value ˚k. i.e.

7

7Nimpi1q, . . . , Nimpi`q
?

?

C
”

#

˚k if ` “ 1

˚pk ´ 1q otherwise
where k “ max

1ďjď`
pijq

Proof: Again the proof is by induction on k “ max1ďjď`pijq. If Nimp0q belong to the superposition
(i.e. min1ďjď`pijq “ 0), no unsuperposed move is legal, then the options are all superposed. Also
if the game is superposed with something else, all moves bring to a superposed game. In both cases
the options are superposition of at least two Nim heaps of any maximum size k1 with 0 ď k1 ď k´1,
which have value ˚pk1 ´ 1q, so the game has value ˚pk ´ 1q.

Now if there is only one element in the superposition, all unsuperposed moves are legal, and the
values of the options span the interval r0, k ´ 1s. l
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Lemma 10 In Ruleset C’, a superposition of Nim heaps with maximum size k has value ˚k unless
Nimpk ´ 1q belongs to the superposition. In that case, the game has value ˚pk ´ 1q, with the only
exceptions of

7

7Nimp0q,Nimp1q
?

?

C1 which has value ˚ and
7

7Nimp1q,Nimp2q
?

?

C1 which has value 0.

G “
7

7Nimpi1q, . . . , Nimpi`q
?

?

C1 ”

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0 if G “
7

7Nimp1q,Nimp2q
?

?

C1

or
7

7Nimp0q,Nimp1q,Nimp2q
?

?

C1

˚ if k “ 1

˚pk ´ 1q if k ´ 1 P tiju

˚k otherwise

where k “ max
1ďjď`

pijq

Proof: We first consider separately the games with a largest heap of size less than 3. Observe
first that in Ruleset C’, the games

7

7Nimp1q
?

? and
7

7Nimp0q,Nimp1q
?

? have only p1,´1q as a possible

move, which leads to an ended game. Thus they have value ˚. Now in both
7

7Nimp1q,Nimp2q
?

? and
7

7Nimp0q,Nimp1q,Nimp2q
?

?, the options are p1,´1q and pp1,´1q, p1,´2qq. Both lead to the game
7

7Nimp0q,Nimp1q
?

? which has value ˚, so the initial game has value 0. Finally, the games
7

7Nimp2q
?

?

and
7

7Nimp0q,Nimp2q
?

? have options
7

7Nimp0q
?

?,
7

7Nimp1q
?

?, and
7

7Nimp0, 1q
?

? and thus have value ˚2.
Consider now the other games, which have a largest heap in the superposition of size k ě 3. We

prove the lemma by induction on k. Suppose first that Nimpk ´ 1q belongs to the superposition.
Then the move pp1,´jq, p1,´j ´ 1qq leads to a superposition of largest heap Nimpk ´ jq that also
contains Nimpk´ j´1q, thus of value ˚pk´ j´1q if 1 ď j ď k´3, 0 if j “ k´2, and ˚ if j “ k´1.
Moreover, all moves bring to a game with largest heap of size k1 with k1 ď k ´ 1 and that contain
Nimpk1 ´ 1q.

Assume now that Nimpk´1q does not belong to the superposition. Then the move pp1,´jq, p1,´kqq
(for 1 ď j ď k ´ 2) leads to a superposition of largest heap Nimpk ´ jq that does not contain
Nimpk ´ j ´ 1q, so of value ˚pk ´ jq by induction. With pp1,´kq, p1,´k ` 1qq, we reach the game
7

7Nimp0q,Nimp1q
?

? which has value ˚. With the move pp1,´kq, p1,´k ` 1q, p1,´k ` 2qq, we reach

the game
7

7Nimp0q,Nimp1q,Nimp2q
?

? which has value 0. All moves reach a game with value at most
˚pk ´ 1q since the largest heap of the resulting game is of size at most k ´ 1. This concludes the
proof. l

6 Conclusion

6.1 Quantum variations of games with more than one heap.

In the above, we restricted ourselves to the study of games with a single Nim heap, as an initial
approach. The next step is naturally to consider games where there are two heaps or more. Such a
game is fundamentally different from the sum of two games on one heap, since it becomes possible
to play a superposition of moves on different heaps. We then have to consider some extra cases like
in the following lemma.

Lemma 11 In Ruleset A, for i, j ą 0,
7

7Nimpi, 0q,Nimp0, jq
?

?

A
” ˚pmaxpi, jq ´ 1 ` δi,jq where δi,j

denotes the Kronecker delta.

Proof: Let S “
7

7Nimpi, 0q,Nimp0, jq
?

?, with i ě 0, j ą 0. Observe first that if i “ 0, j “ 1, then
there is no possible move and the game has value 0.
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We now consider the possible moves on S. First observe that every possible move brings to a
game that is equivalent to a superposition of at most two games. Indeed, a superposition of classical
moves on the first heap pp1, i1q, . . . p1,´ikqq brings to a superposition

7

7Nimpi ´ i1, 0q, . . .Nimpi ´

ik, 0q
?

?, which is equivalent to
7

7Nimpi ´ minltilu, 0q
?

? by Theorem 3. This option has value ˚pi ´
minltilu ´ 1q by Lemma 6, which is at most ˚pi´ 2q. Similarly, moves pp2,´j1q, . . . p2,´jkqq bring
to the position

7

7Nimp0, j ´ minltjluq
?

? with value at most ˚pj ´ 2q. Finally, moves of the form

pp1,´i1q, . . . p1,´ilq, p2,´j1q, . . . p2´ jk1q lead to the superposition
7

7Nimpi´minltilu, 0q,Nimp0, j´

minltjluq
?

?.
By induction, these positions have value at most ˚pmaxti, ju ´ 1q, and the only situation when

this maximum value is attained is when i “ j, and the move played is pp1,´1q, p2,´1qq. This prove
that the value of

7

7Nimpi, 0q,Nimp0, jq
?

?

A
is at most ˚pmaxpi, jq ´ 1` δi,jq.

To show the other inequality, we simply need to observe that all the values ˚k for k ď j ´ 2 are
reached by the moves pp2,´j ` kq, p2,´j ` k ` 1qq, and similarly for i on the first heap. l

6.2 Discussion on the different rulesets.

Among the proposed rulesets, we think that Ruleset C is interesting for its physical interpretation:
when the position is classical we can use classical moves but when applying a superposed move we
put the system in a superposition and we can no-longer act classically: one cannot force a branch
of a superposition by choosing a classical move.

On the other hand, the Combinatorial Game Theorist might find the Ruleset A more interesting
to study, since it diverges most from the classical game.

Another natural restriction for simplifying the game study would be to limit moves allowed to
superpositions of at most two moves. This was the choice made by the Quantum Tic-Tac-Toe that
can be played online (e.g. at http://countergram.com/qtic/) or by the Quantum tic tac toe-apps
for smartphones. By Corollary 5, this restriction does not change anything in Ruleset A, B or D
on Nim games on at most two heaps. Lemmas 9 and 10 (for Ruleset C and C’) also hold under this
restriction.

With this restriction, we computed with CGSuite [13] the values of the games
7

7Nimpi, jq
?

? for
small values of i and j, they are given in the Appendix, for each of the rulesets. Observe in particular
the case of the game

7

7Nimp3, 3q
?

?

A
that has value 4, which cannot be obtained by a combination of

sums of heaps on at most three tokens.
Two player games are often used to prove lower bounds for algorithms, and playing against

an opponent playing randomly has been considered to prove bounds for quantum algorithms [8] It
would be interesting to investigate if the family of games we define can be used to prove adversary
bounds for quantum algorithms using a fixed set of gates. It would also be of interest to look at
the possible connection with settings of blind quantum computing [3, 4] where one player (Alice)
has access only to a set of gates and wants an opponent (Bob) to help her perform a computation
without gaining information.
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Appendix

We first give the values of small games on two heaps computed with CGSuite in the case when
superposition of only two moves are allowed. The tables are available for each ruleset.

0 1 2 3 4 5 6 7 8 9 10 11
0 0 0 1 2 3 4 5 6 7 8 9 10
1 0 0 3 1 2 5 4 7 6 9 8 11
2 1 3 1 0 6 2 7 4 9 10 5 8
3 2 1 0 4 7 3 2 8 5 6 13 14
4 3 2 6 7 0 1 3 11 12 4 14 9
5 4 5 2 3 1 0 11 12 13 14 4 16
6 5 4 7 2 3 11 12 13 0 15

Values of
7

7Nimpi, jq
?

?

A

0 1 2 3 4 5 6 7 8 9 10
0 0 1 0 2 3 4 5 6 7 8 9
1 1 0 1 4 2 3 6 5 8
2 0 1 0 5 6 2 3 8
3 2 4 5 1 7 6 0
4 3 2 6 7 3 4
5 4 3 2 6 4 0

Values of
7

7Nimpi, jq
?

?

B

0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 1 0 3 4 5 6 7 8
2 2 3 1 5 6 7 8 9
3 3 4 5 0 7 8 2 10
4 4 5 6 7 0 9 10
5 5 6 7 8 9 0
6 6 7 8 2 10
7 7 8 9 10

Values of
7

7Nimpi, jq
?

?

C

0 1 2 3 4 5 6 7 8
0 0 1 2 3 4 5 6 7 8
1 1 0 3 4 2 6 7 5 9
2 2 3 0 5 6 1 8
3 3 4 5 1 7 0
4 4 2 6 7 3

Values of
7

7Nimpi, jq
?

?

C1

0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 1 0 3 2 5 4 7 6
2 2 3 1 0 6 7 4
3 3 2 0 4 1 6
4 4 5 6 1 0 2

Values of
7

7Nimpi, jq
?

?

D
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