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Abstract

Various frameworks that generalise the notion of contextuality in the-
ories of physics have been proposed recently; one is a sheaf-theoretic
approach by Abramsky and Brandenburger; a second is an equivalence-
based approach by Spekkens. We combine the two approaches to derive a
canonical method for detecting contextuality in models with preparations,
transformations and sharp measurements, specifically in noise-free quan-
tum circuits. In addition, we show that there is an isomorphism between
respective categories of the two formalisms, which restricts to an isomor-
phism between the class of non-contextual theories in the sheaf sense and
the class of factorizable non-contextual theories in the equivalence-based
sense.

1 Introduction

Two Formalisms for Contextuality

Contextuality of quantum mechanics, which entails the impossibility of assign-
ing predetermined outcomes to observables in a way that is independent of the
method of observation, was first described by Kochen and Specker in [12]. Re-
cently, two formalisms of different scope and nature have been proposed, which
generalise the currently known examples of contextuality. The two approaches
share the goal of seeking to express the notion of non-contextuality in a man-
ner that is independent of the quantum formalism, and hence applicable to any
operational theory. In this paper, we unify the sheaf-theoretic formalism by
Abramsky and Brandenburger [3] with the equivalence-based notion of contex-
tuality developed by Spekkens in [16]. We combine the advantages of each
formalism to give a method for detecting contextuality in noise-free quantum
circuits. This is helpful for an exploration of the connection between contextu-
ality and quantum computing.

The Sheaf Approach

In the sheaf approach to contextuality, one defines contextuality as the non-
existence of a joint probability distribution over the outcomes of joint measure-
ments. It is formulated within the mathematical framework of sheaf theory,
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as the non-existence of a global section for a presheaf of measurement out-
comes. The mathematical framework provides algorithmic methods to detect
contextuality based on sheaf cohomology [6], as well as means of quantifying
contextuality [1]. The approach can be applied to data generated by experi-
ments without further knowledge or assumptions about the underlying physical
description.

The Equivalence-Based approach

Contextuality in the equivalence-based approach is defined as the non-existence
of certain ontological models for operational theories. Such an ontological model
must be determined by the statistical data of the experiment only, and cannot
depend on any additional data, regarded as the ’context’. This gives a natural
explanation for operational equivalence of measurements and preparations: we
cannot distinguish them because they correspond to the same ontological values.
The formalism distinguishes three different types of contextuality: contextuality
of preparations, transformations and of (unsharp) measurements. A theory as
a whole is non-contextual if it is non-contextual for preparations, transforma-
tions, and for measurements simultaneously. As a result, contextuality can be
experimentally tested, in a way that is robust to noise [13].

Overview

In this paper, we draw a formal connection between the sheaf-theoretic approach
to contextuality on the one hand and general contextuality in the equivalence-
based approach on the other hand. General contextuality is defined as the
existence of at least one of the different types of contextuality.

We show that scenarios that can be described in the sheaf formalism corre-
spond to operational theories and vice versa. A priori, experimental scenarios
that are non-contextual in the sheaf-theoretic sense, may not be non-contextual
in the equivalence-based sense, as they may depend on data other that the
outcome statistics of the experiment. We show that whenever an experimen-
tal setting is non-contextual in the sheaf sense, we can eliminate any of these
redundant data, making it equivalent to an experimental setting with no statis-
tical redundancies. We use this minimal model to construct a non-contextual
ontological representation for each scenario that is non-contextual in the sheaf
sense. We call this the ’canonical’ ontological model. In addition, we gener-
alise a result of Abramsky and Brandenburger, to derive that an operational
theory can be realised by a factorizable non-contextual ontological model in the
equivalence-based sense, if and only if it can be realised by a ’canonical’ non-
contextual ontological model. By a result derived in [16], this implies that an
operational theory with sharp measurements is non-contextual if and only if its
’canonical’ representation is non-contextual. Noise-free quantum circuits can
be represented as operational theories with sharp measurements. Consequently,
we have a method for detecting contextuality in the circuit model. Our results
depend on the way we choose to represent a physical setting in the abstract
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formalisms. The level of abstraction allows a certain degree of freedom in this
respect. While the two formalisms are seemingly very different, they can be
used to represent reality in equivalent ways. The choices we make in this paper
to establish this equivalence offer an insight into the meaning of the formalisms
and exemplify their nuances.

Outline

In Sections 2 we recall the equivalence-based approach to contextuality. We
demonstrate that non-locality is a special case of measurement contextuality in
the equivalence-based approach, and that measurement non-contextuality im-
plies parameter independence of ontological models. We discuss Mermin’s All
Versus Nothing argument and Bell’s scenario in the equivalence-based model. In
Section 3, we recall the sheaf-theoretic approach. We give an alternative contex-
tuality proof for the scenario for preparations and unsharp measurements given
by Spekkens [16]. In Section 4, we introduce a method to construct a non-
contextual ontological representation for each non-contextual empirical theory.
We demonstrate how these ontological representations provide a simple method
to detect contextuality in noise-free quantum circuits in Section 5. In Section 6.1
we introduce the categories Emp of empirical theories, OT of operational the-
ories, and OR of ontological representations. In Section 6.2, we show how the
correspondence between empirical and operational theories gives rise to a cat-
egorical isomorphism, which maps the subcategory of non-contextual empirical
theories to the subcategory of operational theories that can be realised by a
factorizable non-contextual ontological representation. In Section 7, we discuss
contextuality for unsharp measurements, and give an example for which the two
notions of contexuality differ.

2 The Equivalence-Based Approach

In this section we recall the equivalence-based approach to contextuality intro-
duced by Spekkens in [16] and [14]. We discuss how this approach relates to
joint measurements, factorizability, and parameter independence. The Kocher-
Specker contextuality argument can be derived from the equivalence-based ap-
proach, as shown in [13]. We will demonstrate how it gives rise to Bell’s non-
locality scenario and Mermin’s all versus nothing argument.

Consider two sets, P and M , of preparation procedures and measurement
procedures, respectively. For each measurement m ∈ M there is a set Om of
possible measurement outcomes. For each pair (p,m) ∈ P ×M , there exists
a probability distribution dp,m : Om → [0, 1] over the set of possible outcomes
Om. The value dp,m(k) should be understood as the probability of obtaining
the outcome k when a preparation p is performed, followed by a measurement
m. We write D for the set of probability distributions {dp,m}p∈P,m∈M . An
operational theory is defined by a tuple (P,M,D,O), where O = ∪mOm.
In [16], operational theories also contain a set of transformation procedures,
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but we will not consider these here. This is a minor restriction since we can
account for any transformation followed by a measurement by considering it as
a new measurement. However, we lose the significance of compositionality of
transformations.

Preparations and measurements are statistically equivalent when they
are not distinguishable based on the measurement statistics in the operational
theory. Let p, p′ ∈ P be preparations and let m,m′ ∈M be measurements, this
is expressed below.

p ∼ p′ ⇔ dp,m = dp′,m ∀m ∈M
m ∼ m′ ⇔ dp,m = dp,m′ ∀p ∈ P

(m, k) ∼ (m′, k′) ⇔ dp,m(k) = dp,m′(k
′) ∀p ∈ P

An example of an operational theory is quantum theory. Equivalence classes
of preparation procedures correspond to density matrices. Equivalence classes
of measurement procedures correspond to POVM’s. An ontological repre-
sentation of the operational theory A = (P,M,D,O) consists of a measurable
topological space of ontological values Ω, together with sets of distribution func-
tions µ = {µp : Ω → [0, 1]}p∈P and ξ = {ξm(λ) : Om → [0, 1]}λ∈Ω,m∈M . The
distribution functions are such that they realise the measurement statistics of
A, which is expressed by the formula below.∫

Ω

ξm(λ)(k)µp(λ)dλ = dp,m(k) ∀p ∈ P,m ∈M (1)

An ontological model should be thought of as representing a physical system
as it really is, while the operational theory merely describes our knowledge of
the system, which may not be accurate or complete.

Remark 1. If we assume that preparations, measurements and outcomes form
separable measure spaces. By a result of Brandenburger and Keisler [5], we can
take the space of ontological values to be the unit interval with the Borel measure
without loss of generality.

Definition 1. An ontological representation is called preparation non-
contextual if µp = µp′ whenever p ∼ p′; it is called measurement non-
contextual if ξk,m = ξk′,m′ whenever (m, k) ∼ (m′, k′); it is called non-
contextual if it is preparation non-contextual as well as measurement non-
contextual. An operational theory is called non-contextual whenever there
exists a non-contextual ontological model that realises the theory.

One can verify that it is possible to find a non-contextual ontological rep-
resentation for any operational theory. To see this, consider the ontological
representation where the ontological states are given by equivalence classes of
preparations Ω = {[p]}p∈P ; the distribution function µq([p]) is 1 iff q ∈ [p] and 0
otherwise; the distribution ξm([p])(k) = dp,m(k). As a consequence, additional
structure on an operational theory is required to characterise contextuality.
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Postulate 1 (Convexity of Operational Theories). Operational theories are
closed under convex combinations of preparations and measurements.

In quantum theory, convex combinations can be seen as sampling over prepa-
ration or measurement procedures with probabilistic weights specified by the
coefficients.

Postulate 2 (Preservation of Convexity). Let p = c1p1 + c2p2 be a convex
combination of preparations, let m = c1m1 + c2m2 be a convex combination of
measurements. We have the following equalities of distribution functions:

µc1p1+c2p2 = c1µp1 + c2µp2 (2)

ξc1m1+c2m2
= c1ξm1

+ c2ξm2
(3)

(4)

The two postulates are necessary conditions for the contextuality proof of
preparations and unsharp measurements of 2-dimensional quantum systems
given in [16]. It is also a necessary requirement for recovering any examples of
contextuality that assume outcome determinism, including the Kochen Specker
scenario and Mermin’s ’All versus nothing’ argument. We will demonstrate this
for the latter in Section 2.2, using Lemma 1 below. A distribution function for a
measurement m in an ontological model is outcome-deterministic if for any
ontological value λ, one outcome of m occurs with certainty. This is the case
when ξm(λ)(k) ∈ {0, 1} for all k ∈ O and λ ∈ Ω. A distribution function is
outcome-deterministic almost everywhere if it is outcome-deterministic
up to a subset of Ω of measure 0. For a certain class of operational theories,
any non-contextual ontological representation must be outcome-deterministic.
We give two sufficient conditions below.

Definition 2. A measurement m with outcome set Om is perfectly pre-
dictable if for all k ∈ Om there exists a preparation pk, such that dpk,m(k′) =
δk,k′ .

Definition 3. A preparation pmix is maximally mixed if the following two
conditions hold.

1. For every preparation p′, pmix is statistically equivalent to some convex
combination of preparations containing p′.

2. For every perfectly predictable measurement m, pmix is statistically equiv-
alent to some convex combination of pk for k ∈ Om.

Lemma 1. Let m be a perfectly predictable measurement in an operational the-
ory that satisfies postulates 1 and 2 and contains a maximally mixed preparation.
The distribution function ξm is outcome-deterministic almost everywhere.

Proof. Let Ωp = {µp(λ) > 0} be the topological support of µp. The topological
support of a measure space is defined to be the largest closed subset such that
every open neighbourhood of every point of the space has positive measure.
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Perfect predictability implies that
∫
ξm(λ)(k)µpk′ (λ)dλ = δk,k′ . If k = k′, this

means that ξm(λ)(k) = 1 for all λ ∈ Ωk, since µpk is a probability distribution.
For k 6= k′, this implies that ξm(λ)(k) = 0 for λ ∈ Ωk′ . This gives us the
following description of ξm:

ξm(λ)(k) =

{
1 if λ ∈ Ωk

0 if λ ∈ ∪k′ 6=kΩk′

It is left to prove that Ω\∪Ωk has measure zero. By preparation non-contextuality,
there is one distribution µpmix for all preparations that are statistically equiv-
alent to the maximally mixed preparation pmix. It follows that Ω\ ∪p Ωp has
measure zero. By the first condition of the maximally mixed preparation and
postulate 2, it follows that Ω\Ωpmix must have measure zero. By the second
condition, we know that Ωpmix\ ∪k∈Om Ωpk has measure zero. It follows that
Ω\ ∪k∈Om Ωpk has measure zero. Hence ξm is outcome-deterministic almost
everywhere.

In quantum theory, PVM’s are perfectly predictable. Any preparation of the
maximally mixed state is a maximally mixed preparation. It follows that each
preparation non-contextual ontological representation that satsfies postulate 2
of a PVM in quantum theory is outcome-deterministic. This result was given
in [16].

Definition 4. A set of N measurements {m1,m2, ...,mN} is jointly measur-
able if there exists a measurement m with the following features:
(i) The outcome set of m is the Cartesian product of the outcome sets of
{m1, ...,mN}
(ii) Let S be a subset of the index set {1, ..., n}. The outcome distributions for
every joint measurement of any subset {ms|s ∈ S} ⊂ {m1, ...,mN} is recovered
as the marginal of the outcome distribution of m for all preparations p ∈ P . De-
noting a joint measurement of the subset S by mS with a corresponding section
kS ∈ Oms , the condition can be expressed as

∀S, ∀p : dp,mS
(k) =

∑
k∈Om:πS(k)=kS

dp,m(k). (5)

Here, πS is the projection function on the subset E(mS) ⊂ E(m).
(iii) The functions πS ◦m define measurements in the operational theory.

Conditions (i) and (ii) correspond to the definition of a joint measurement
in [14].

An ontological representation is called parameter independent if for each
measurement the effect on the ontological states is independent of any other
measurement performed simultaneously. We can restrict the distribution func-
tion of a joint measurement m to a subset m′ by the restriction function ξm|m′ ,
which is defined as ξm|m′(k′)(λ) :=

∑
k:πm′ (k)=k′ ξm(k)(λ), where πm′ : Om →

Om
′

projects the outcomes of m to the set of outcomes of m′. Parameter inde-
pendence means that for two joint measurements m,n, the equality ξm|m∩n =
ξn|m∩n holds.
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Lemma 2. Any measurement non-contextual representation of an operational
theory (P,M,D,O) is parameter independent. That is, for all joint measure-
ments m,n ∈ M in a measurement cover M, we have the following equalities:

ξkm|m∩n(λ) = ξkm∩n(λ) = ξkn|m∩n(λ) (6)

Proof. Let m = {m1, ...,mN} be a jointly measurable set of measurement proce-
dures ofM, let p be a preparation procedure, let Ks be the set {k ∈ Om|πs(k) =
ks}, for some ks ∈ Oms .

By joint measurability and basic probability theory, we have the following
sequence of equalities on the operational level:

P(kS |mS ; p) =
∑
k∈KS

P(k|m, p)

= P(KS |m, p)
= P(kS |πS ◦m, p)

By condition (iii) of joint measurements, πS ◦m is a well-defined measure-
ment. It then follows from measurement non-contextuality that ξksms

= ξkSπS◦m,
which implies

ξkSmS
=

∑
k|πS(k)=kS

ξm(k) =: ξm|mS
(kS) (7)

We call an ontological model factorizable when for joint measurements m =
(m1, ...,mn), we can write ξm(λ)(o) =

∏
i=1,...,n ξmi

(λ)(πi(o)). It was shown in
Theorem 6 of [14] that any ontological model which is outcome-deterministic
and measurement non-contextual, is factorizable.

2.1 Bell’s Scenario

Consider an experiment where two parties can each choose from two different
measurements with outcome set {0, 1}: a and a′ for the first party; b and b′

for the second party. The outcome statistics of each possible combination of
measurements is organised in the table below. Each entry ai,j of the table
represents the probability of obtaining outcome i for measurement j.

(0,0) (1,0) (0,1) (1,1)
(a, b) 1/2 0 0 1/2
(a′, b) 3/8 1/8 1/8 3/8
(a, b′) 3/8 1/8 1/8 3/8
(a′, b′) 1/8 3/8 3/8 1/8

(8)
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This gives rise to an operational theory with one preparation, P = {p}. The
set of measurements is defined as M = {a, a′, b, b′, (a, b), (a′, b), (a, b′), (a′, b′)}.
The outcome set for each elementary measurement is Om = {0, 1}; for each
tuple, the outcome set is {0, 1}2. The set D is given by the distributions defined
in the table, together with their marginals.

We assume perfect predictability and the existence of a maximally mixed
state. Since any non-contextual ontological representation is in particular prepa-
ration non-contextual, it follows from perfect predictability and the existence
of the maximally mixed state that any such representation must be outcome-
deterministic, hence factorizable. As a result, every ontological state can be
associated with a function {a, a′, b, b′} → {0, 1} from the set of elementary mea-
surements to the outcome set. This morphism maps each measurement to the
outcome that occurs with probability 1 when the system is in ontological state
λ. In other words, we can identify each ontological value λ with the outcome
(α, β, α′, β′) ∈ {0, 1}4. We obtain the probability that a = α, b = β, a′ = α′, b′ =
β′ by taking the weithed sum over all ontological values that correspond to this
outcome according to equation 1. The weights in this sum are given by the
distribution function of the preparation procedure. We denote this probability
by pαβα′β′ . These probabilities should sum up to the values given in the table.
The entries a1,1, a2,2, a3,3, and a1,4, give us the 4 equations below.

a1,1 : p0000 + p0010 + p0001 + p0011 = 1/2 a2,2 : p0010 + p1010 + p0011 + p1011 = 1/8

a3,3 : p0001 + p0101 + p0011 + p0111 = 1/8 a1,4 : p0000 + p0100 + p1000 + p1100 = 1/8

The left-hand-side of the sum of a2,2, a3,3 and a1,4 should be greater than 1/2,
since it contains all summands of a1.1. However, the right-hand side of these
equations sums to 3/8. As a result, the equations cannot be satisfied. As a
consequence of this contradiction, a non-contextual ontological representation
cannot exist.

2.2 Mermin’s All Versus Nothing Argument

Suppose that we are given a preparation of the GHZ state (|↑↑↑〉 + |↓↓↓〉)/
√

2
and a choice of Pauli X and Y measurements {Xi, Yi}i∈{1,2,3}, where the index
i corresponds to the three different components of the GHZ state. The outcome
set for each individual measurement is given by its eigenvalues, {−1, 1}.

This gives rise to an operational theory where P = {pGHZ}, and
M = {X1, X2, X3, Y1, Y2, Y3, X1Y2Y3, Y1Y2X3, Y1X2Y3, X1X2X3}. The triples
represent joint measurements. The outcome sets Om are {−1, 1} for the ele-
mentary measurements and {−1, 1}3 for the joint measurements. The elements
of D are given by the Born rule. One can verify that for the triples of the
measurements below, we get the following outcomes with certainty, where the
right-hand-side is the product of the outcomes of the three individual measure-
ments:
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X1Y2Y3 = −1 Y1Y2X3 = −1 Y1X2Y3 = −1 X1X2X3 = 1

We will show that no ontic state λ in a non-contextual representation allows
for probability distributions µm(λ) that are consistent with the support of this
scenario. Suppose that there exists a non-contextual ontological representation
for this operational theory, then in particular, this representation is preparation
non-contextual. Assuming perfect predictability and the existence of a max-
imally mixed state, preparation non-contextuality of the ontological represen-
tation implies outcome determinism and factorizability. Given any ontological
state λ of such representation, we can identify each of the measurements Xi, Yi
with the outcome that occurs with certainty. All four triples are joint measure-
ments of their components, so by factorizability, their outcomes correspond to
the product of the outcomes of the three components. In other words, µ assigns
−1 or 1 to each Xi, Yi, in a way that the equalities above are satisfied. It is easy
to see that this is impossible: The product of the expressions on the left-hand-
side must equal 1, since every measurement occurs twice, while the product of
the right-hand-sides equals -1.

3 The Sheaf Approach

We recall the sheaf-theoretic approach to contextuality and non-locality, which
was introduced by Abramsky and Brandenburger in [3] and [2]. Sheaves are
a mathematical tool for describing how local data can be combined to obtain
global information about a system. In this setting a system type consists of
a discrete set X of measurement labels, together with a measurement cover
M = {Ci}i∈I . This is an antichain of subsets of X, such that ∪i∈ICi = X.
This means that for C,C ′ ∈ M, we have the implication C ⊂ C ′ =⇒ C = C ′.
The measurement cover M represents the maximal sets of measurements that
can be performed jointly. We write ↓ MA for the simplicial complex generated
by M.

We shall fix a set O of outcomes, which is the union of the sets of possible
outcomes for each of the measurements in X. For each set of measurements
U ⊂ X, a section over U is a function U → O. We write OU for the set
of sections over U . The assignment U 7→ OU defines a sheaf over the discrete
topological space E : P(X) → Set, which we call the sheaf of events. The
restriction function, which is the remaining part of the data defining this sheaf,
is given below.

ρUU ′ := E(U ⊂ U ′) : OU
′
7→ OU :: s→ s|U

We call elements of E(X) global sections of measurement outcomes. Each
global section consists of an assignment of an outcome to each of the measure-
ments.

For any commutative semiring R and set X, an R-distribution d on X is a
map d : X → R of finite support, such that
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∑
x∈X

d(x) = 1

We write DR(X) for the set of R-distributions on X. For a function of sets
f : X → Y , we define

DR(f) : DR(X)→ DR(Y ) :: d 7→ [y 7→
∑

f(x)=y

d(x)]

It is easy to see that DR is functorial. Hence, we can compose E with DR to
obtain a presheafDRE : P(X)op → Set, which maps each set of measurements to
the set of R-distributions over their sections. The ring of non-negative reals R+

corresponds to probability distributions over the outcomes; the ring of booleans
B represents the possibility of outcomes.

The approach can be generalised to a presheaf over a small, thin category
DRE : C → Set, as in [8]. A category is called thin when for each two objects
A,B and each two morphisms f, g : A→ B, we have the equality f = g. This is
another way of characterising a preorder. As in the equivalence-based approach,
the order relation is given by a notion of joint measurement. Depending on the
interpretation of an empirical theory, one could adopt different notions of joint
measurement. In this paper we will use the notion of joint measurability given
in Section 1. We recover the set of measurement labels X as the set given by
all objects A, such that there is an arrow A → B to each object B, for which
there exists an arrow B → A. The measurement cover M corresponds to the
set of those objects A, such that there is an arrow B → A from every object B,
for which there exists an arrow A→ B. Note that when the thin category is a
poset, we obtain the usual notions of measurement labels and a measurement
cover.

A state for a system type C corresponds to a family σ for the cover M,
with respect to the presheaf DRE . This is given by a distribution σC ∈ DRE(C)
for each measurement context C ∈ M. A state is called no-signalling when
for all C,C ′ ∈M

σC |C∩C′ = σC′ |C∩C′

When a state σ is no-signalling, the restriction σ|m for m ∈ Ob(C) corresponds
to the probability distribution over the outcomes of m. We will denote this
distribution by σm. There may be several states corresponding to the same
distribution. These are statistically equivalent states. We call the tuple
(C, S,O), where S is a collection of states for a system type C, an empirical
theory. We define contextuality of a state σ ∈ S as the non-existence
of a global section for the presheaf DRE given σ. An empirical theory is
contextual if at least one of its states is contextual.

Quantum theory gives rise to an empirical model. The measurement labels
correspond to POVM’s, elements of a measurement cover are POVM’s that form
a joint measurement as in Definition 4, and states are given by density matrices.
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3.1 Convexity in Empirical Theories

Many of the classic contextuality results about quantum mechanics, including
Kochen-Specker scenarios, Hardy’s paradox, Bell’s scenario and Mermin’s all
versus nothing argument can be derived from the sheaf approach, as shown in [3]
and [7]. In this section we will do the same for the contextuality argument of
preparations and unsharp measurements described in [16]. We will demonstrate
that the arguments are a direct consequence of Postulates 1 and 2, independent
of the chosen notion of contextuality.

As Postulates 1 and 2 are formulated in terms of operational theories and on-
tological representations, we introduce their analogues for empirical models. In
this setting, global sections can be seen as the counterpart of the non-contextual
ontological representations. We explain this in Section 4.1. Note that states are
by definition closed under convex combinations, which means that Postulate 1
is equivalent to Postulate 3 below.

Postulate 3 (Convexity of Empirical Theories). The set of measurement labels
of an empirical theory is closed under convex combinations.

Postulate 4 (Preservation of convexity). Let d be a global section for an em-
pirical theory. Let p1, p2 be preparations that give rise to the states σp1 and σp2 ,
such that the convex combination c1 ·p1+c2 ·p2 gives rise to the state σc1·p1+c2·p2 .
Let m1, m2 be measurement labels. We have the following equalities

dσc1·p1+c2·p2 = c1 · dσp1 + c2 · dσp2 (9)

dc1·m1+c2·m2 = c1 · dm1 + c2 · dm2 (10)

Lemma 3. Let (C, S) be an empirical model with a global section d. Postulate
4 implies that convexity is preserved by the empirical model

σc1·p1+c2·p2 = c1 · σp1 + c2 · σp2

σc1·m1+c2·m2 = c1 · σm1 + c2 · σm2

Proof. This follows immediately from the definition of a global section.

We now give a proof for the contextuality scenarios of preparations and
unsharp measurements in the sheaf formalism.The proofs depend on the fact
that the empirical model of quantum theory does not preserve convexity.

3.1.1 Contextuality for Preparations

Consider the following set of states in quantum theory:

ψa =(1, 0) ψb = (1/2,
√

3/2) ψc =(1/2,−
√

3/2)

ψA =(0, 1) ψB = (
√

3/2,−1/2) ψC =(
√

3/2, 1/2)
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We define the empirical theory below, where each Px is the measurement
label that corresponds to the projection onto the quantum state φx. Further-
more, σx is the state in the empirical model that corresponds to the quantum
state φx. The state σxyz is defined as 1

3σ
x + 1

3σ
y + 1

3σ
z.

X = {Pa, PA, Pb, PB , Pc, PC} M = {{Pa, PA}, {Pb, PB}, {Pc, PC}}
S = {σa, σA, σb, σB , σc, σC , σabc, σABC} O = {0, 1}

The outcome set O indicates if the outcome corresponding to the projector
of the POVM element occurs (1), or if it does not (0). For instance, for the
section s : Pa 7→ 0, σaPa

(s) = 0, σbPa
(s) = 1

4 , and σcPa
(s) = 1

4 .

The convex combination 1
3σ

a+ 1
3σ

b+ 1
3σ

c gives rise to the maximally mixed
state with constant distribution σmixpx = 1

2 for any observable px. Suppose that
there exists a global section d, by Postulate 4 and Lemma 3, this gives us the
following equality.

1

2
=

1

3
σaPa

+
1

3
σbPa

+
1

3
σcPa

It is easy to see that this cannot hold for any section. Working out the
outcome probabilities for Pa 7→ 0 gives us the contradiction below.

1

2
=

1

3
· 0 +

1

3
· 1

4
+

1

3
· 1

4

3.1.2 Contextuality for Unsharp Measurements

Consider the following empirical theory

X = {Pa, PA, Pb, PB , Pc, PC , Pabc, PABC}
M = {{Pa, PA}, {Pb, PB}, {Pc, PC}, {Pabc, PABC}}
S = {σa, σA, σb, σB , σc, σC}
O = {0, 1}

The measurement label Pabc is the convex combination 1
3Pa + 1

3Pb + 1
3Pc,

PABC is defined similarly, and the other elements are as defined in section 3.1.1.
In quantum theory, this gives us the measurement context {Pabc, PABC} =
{ 1

2 ,
1
2}. Suppose that this scenario has a global section. By Postulate 4 and

Lemma 3, we have the equalities below for any state σ.

1

2
= σPabc

= 1/3σPa
+ 1/3σPb

+ 1/3σPc
(11)

1

2
= σPABC

= 1/3σPA
+ 1/3σPB + 1/3σPC (12)
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It is easy to see that this does not hold for the given states. For example,
if we take the state σa, the convexity condition together with the Born rule

give us σad(1) = σaD(0) = 3+
√

3
6 and σD(1) = σd(0) = 1+

√
3

6 . This contradicts
the outcome statistics of {pabc, pABC}, which assign equal probability to each
outcome for any measurement.

4 Unifying Approaches

We will explore the relation between empirical theories, operational theories, and
ontological representations. Any no-signalling empirical theoryA = (CA, SA, OA)
corresponds to an operational theory Op(A) = (POp(A),MOp(A), DOp(A), OA) in
the sense that the two theories describe the same experimental setting. The
elements of the operational theory are defined below.

POp(A) := SA

MOp(A) := Ob(CA)

dm,σ(k) := σm(s) for dm,σ ∈ DOp(A) and s(m) = k

Conversely, the preorder CA corresponds to the set of measurements M of
the operational theory, with the order relation given by the notion of joint
measurement.

Remark 2. Signalling empirical theories cannot be described as an operational
theory. The reason is that while the ’same’ measurement can have different
outcome statistics in the empirical theory, depending on the context, this is
not possible in an operational theory. A way to get around this is by treating
restrictions of a context to a measurement as elementary measurements.

We will show that every non-contextual empirical theory A gives rise to
an non-contextual ontological representation for Op(A) . We will call this a
canonical ontological model for the empirical theory. Finally, we prove the
following theorem, which generalises the result in [3].

Theorem 4. The following statements are equivalent for any no-signalling em-
pirical theory A and its corresponding operational theory Op(A)

1. The empirical theory A admits a global section

2. The operational theory Op(A) admits a canonical non-contextual ontolog-
ical representation

3. The operational theory Op(A) admits a factorizable non-contextual onto-
logical representation

4.1 A Canonical Ontological Representation

As a warm-up, we recall the canonical ontological representation for empirical
theories with a global section d for each state σ, which was introduced in [3].

13



The ontological states are given by the global sections of outcomes, the distribu-
tions µ correspond to the global section of distribution functions and ξm(s)(k)
indicates whether s assigns the outcome k to the measurement m.

Ω = E(X) µσ(s) = d(s) ξm(s)(k) = δs|m(m),k

It is easy to see that this ontological representation is generally not non-
contextual, since sections may assign different outcomes to statistically equiva-
lent measurements. Suppose that s is a section of measurement outcomes such
that s|m 6= s|n for m ∼ n, then ξm(s)(k) 6= ξn(s)(k). To get around this, we will
prove that whenever a global section exists, we can find another global section
that depends on equivalence classes of measurements only. It is not hard to see
that the same holds for states.

4.2 Statistical Equivalence in Empirical Theories

We call two states σ, σ′ ∈ S and two measurement labels m,m′ ∈ Ob(C) sta-
tistically equivalent when σm = σ′m for all m ∈ Ob(C) and σm = σm′ for all
σ ∈ SA, respectively. In that case we write σ ∼ σ′ and m ∼ m′.

Let A = (CA, SA) be an empirical theory. We construct a new empirical
theory Ã := (CA/∼, S̃A) by quotienting the objects of C by the equivalence
relation. The new category CA/ ∼ contains an arrow between two equivalence
classes if there exists an arrow between two representatives of the classes. It is
instructive to unfold the structure of this new empirical theory. For each object
[C] of CA/ ∼ the new set of sections E([C]) contains a (not necessarily unique)
section s̃ for each s ∈ E(C). This section is defined as s̃([C]) := s(C). The states
in S̃A := {σ̃}σ∈SA

, are defined as σ̃[C](s̃) := σC(s). The set S̃A is well-defined,
because [C] = [D] if and only if σC = σD for each σ ∈ SA.

Lemma 5. Any empirical theory A admits a global section iff it admits a global
section that only depends on equivalence classes of measurements of A.

We will prove this Lemma formally in Section 6. Intuitively, it can be un-
derstood as follows: Any global section d of SA can be restricted to a global
section over a subcategory of CA of representatives of CA/ ∼. This restriction
defines a global section for S̃A. Conversely, any global section d̃ of Ã defines a
global section d for A, defined as d(s) := d̃(s̃) when s assigns the same value to
all elements of an equivalence class, and d(s) := 0 otherwise.

We have shown how to deal with equivalence on the level of measurements.
However, individual outcomes of measurements can be statistically equivalent,
even when the measurements as a whole are not. This means that for some
s ∈ Om and s′ ∈ Om′ , σm(s) = σm′(s

′) for all σ ∈ SA. To eliminate this last
form of statistical redundancy, we rewrite any such system type A as a system
type A′ with outcome set {0, 1}. The measurement labels of A′ are given by the
individual observables in each measurement. We denote each observable by a
tuple (m, k) of a measurement and an outcome, so XA′ := {(m, k)}m∈XA,k∈O.

14



The measurement cover is given by the sets of observables that form a mea-
surement in the original cover: MA′ := {{(m, k)|k ∈ O,m ∈ C}C∈MA

}. The
outcomes 0 and 1 indicate whether the outcome corresponding to the observable
is observed, hence SA′ := {σ′|σ′(m,k)(1) = σm(k)}. The support E(m) of each
measurement m consists of those sections where exactly one observable in each
measurement is assigned a 1, and all others are assigned a 0.

Note that the model A has a global section iff A′ has a global section under
the given restrictions. As a consequence of Lemma 5, A has a global section iff
Ã′ has a global section. Hence, A contains a global section induced by a global
section d for Ã′, which is only defined on equivalence classes.

4.3 Non-contextual Canonical Ontological Representations

We can now define a canonical ontological representation that preserves non-
contextuality. Let A be an empirical theory with a global section dσ for each
state σ ∈ SA, which only depends on the equivalence classes of the prepa-
rations. We make use of the minimal empirical theory Ã′ and its induced
global sections d̃σ̃ to define the canonical ontological representation R(A) =
(ΩNCA , {µNCσ }σ∈SA

, {ξNCm }m∈↓M):

ΩR(A) := E(X(C/ ∼)), µNCσ (s) := d̃σ̃(s̃), ξNCm (s)(k) := δs̃([m]),[k]

Note that ξNCm (s)(k) is only defined when s is a section over n, so when this
is not the case, we will take ξNCm (s)(k) to be 0. This representation generates
the required outcome statistics, as shown below.

∫
ΩNC

A

µNCσ (s)ξNCm (s)(k)ds =
∑

s∈E(X(C/∼))

d̃σ̃(s̃)δs̃|[m]([m]),[k]

=
∑

s∈E(X(C))

dσ(s)δs|m(m),k

= dAσ,m(k)

The first equality holds by unfolding definitions of the canonical representa-
tion. The second equality holds because dσ(s) is only nonzero on those sections
s that assign the same outcome to all equivalent measurements; therefore, we
can extend the sum over E(X/ ∼) to the sum over E(X). The last equality
holds as both expressions are equal to σm(s)(k).

This canonical ontological representation is by definition preparation non-
contextual. On measurements, it is defined such that m ∼ m′ implies ξNCm =
ξNCm′ ; hence it is measurement non-contextual.

It is left to determine under which conditions an operational theory can
be realised by a non-contextual empirical theory. To this end, we generalise
Theorem 8.1 of [3].
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Lemma 6. For every factorizable, non-contextual ontological representation B,
there exists an empirical theory A with a global section, such that R(A) and B
realise the same operational theory.

Proof. Let B be a factorizable, measurement non-contextual ontological repre-
sentation. The operational theory realised by B induces an empirical theory A
where XA is given by the minimal elements of the preorder of joint measure-
ments. By Lemma 2, B is parameter independent. Every preparation p ∈ PB
realises a state σp with a global section dp for the sheaf of distributions induced
by A. These are defined below for r ∈ E(m) and s ∈ E(X):

σp(r) :=

∫
ΩB

ξm(λ)(r(m))µP (λ)dλ dp(s) :=

∫
ΩB

∏
m∈XA

ξm(λ)(s|m(m))µP (λ)dλ

(13)

We need to verify that R(A) and B realise the same measurement statistics.
This follows from the equalities below, where we denote the canonical ontological
representation by Ω′A, µ

′, and ξ′.

∫
s̃∈Ω′A

ξ′m(s̃)(k)µ′pds̃ =
∑

s̃∈E(XA/∼)

δs̃|[m]([m]),[k]

[
d̃σ̃P

(s̃)

]

=
∑

s∈E(XA)

δs|m(m),k

[ ∫
λ∈ΩB

∏
n∈XA

µp(λ)ξn(λ)(s|n(n))dλ

]

=

∫
λ∈ΩB

ξm(λ)(k)

[ ∑
s∈E(XA\m)

∏
n∈XA\m

ξn(λ)(s|n(n))

]
µp(λ)dλ

=

∫
λ∈ΩB

ξm(λ)(k)µp(λ)dλ

The first two equalities result from expanding definitions. For the third, we
apply Fubini’s theorem, split the sum and product, and rewrite the expression.
The last equality holds because probability distributions sum to one over all the
inputs.

Proof of Theorem 4. For any empirical theory A, the canonical non-contextual
ontological representation for Op(A) is given by R(A), which means that 1)⇒
2). The canonical ontological representation R(A) is factorizable; therefore,
2)⇒ 3). Finally, 3)⇒ 1) holds by Lemma 6.

Corollary 7. For the class of perfectly predictable operational theories with
a maximally mixed preparation, an operational theory is non-contextual iff its
canonical ontological representation is non-contextual.

Proof. By Lemma 1, all preparation non-contextual ontological representations
of operational theories in this class are outcome-deterministic. It follows that
all non-contextual ontological representations are factorizable.
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5 Contextuality in the Circuit Model

Theorem 4 gives rise to a method for detecting some forms of contextuality in
the circuit model, under the assumption that the quantum circuits are noise-
free. This method is a first step to a general formalism for contextuality in
the circuit model. This approach does not take statistical equivalences into
account that arise from composition of gates. To accomodate for this type of
equivalence, contextuality of transformations needs to be considered. However,
as quantum circuits can be simulated classically, this will most likely not affect
the contextuality of the circuit. We leave a further analysis for future work.

Contextuality plays a crucial role in measurement-based quantum comput-
ing (MBQC). As shown in [15] and [11], a MBQC scenario evaluates a mod
2 nonlinear function iff this scenario is strongly contextual. Since MBQC is a
universal model for quantum computing, one may ask whether this holds for
quantum computation in general. The most likely answer is ’no’ since we can
compute mod-2 non-linear gates with classical circuits. Indeed, it is easy to
find a counterexample that shows that a strongly contextual MBQC scenario
translates to a non-contextual quantum circuit, which implements the same
computation.

Any quantum circuit, or collection of quantum circuits, corresponds to an
operational theory consisting of preparation procedures of qubits, transforma-
tion procedures (quantum gates), and measurement procedures (projective mea-
surement in the computational basis). For simplicity, we consider operational
theories with only preparations and measurements; therefore, we regard any
combination of gates applied to a preparation as a separate preparation. We
also allow preparations of mixed states and applications of mixed gates.

The measurements in a noise-free quantum circuit are perfectly predictable.
Since the maximally mixed state is part of the operational theory, it follows
from Corollary 7 that a quantum circuit is non-contextual whenever its canon-
ical ontological representation is non-contextual. For a circuit with n qubits,
the canonical set of ontological values is given by the sections over the measure-
ments, so Ω = {0, 1}n. The indicator function ξmi for the measurement on the
ith qubit is the deterministic function such that ξmi(s) for s ∈ Ω corresponds
to the ith component of s. For each preparation p, the function µp is defined as
µp(s) = P (s|p,m), where m is the measurement in the computational basis.

The standard example of contextuality in MBQC is given by the following
scenario. We are given a GHZ state and perform the measurements Ma,Mb,Mc

on the three components of the state, depending on an input of two bits x, y
in the following way: Let P0 be a Pauli X measurement and let P1 be a Pauli
Y measurement. Then Ma := Px, Mb := Py and Mc := Px⊕y. This scenario
implements the OR-gate on the two input bits x, y. It also corresponds to
Mermin’s all versus nothing scenario, as the inputs correspond to the following
measurements:

00 : XXX 01 : XY Y 10 : Y XY 11 : Y Y X

The same OR-gate is implemented by the quantum circuit below, where
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we first have a controlled Hadamard gate on two qubits x and y and finally a
controlled-H gate, controlled by the sum of the first two qubits. The output is
given by the outcome of the measurement on the 3rd qubit.

|x〉

|y〉

|0〉

◦

H

◦

H

⊕

H

We have the following deterministic distribution functions for the different
inputs µ000(000) = 1, µ100(101) = 1, µ010(011) = 1, µ110(111) = 1, determined
by the output probabilities of the circuit. Finally, the three measurements have
the following indicator functions ξ1(xyz) = x, ξ2(xyz) = y, ξ3(xyz) = z. None of
the measurements or preparations is statistically equivalent to anothor; hence,
this ontological representation is non-contextual. Note that under the preserva-
tion of convexity assumption, this circuit is non-contextual, as the circuit only
contains pure states.

6 A Categorical Isomorphism

In this section, we show that the two formalisms can be used to represent physi-
cal reality in equivalent ways. To establish this, we use the mathematical frame-
work of category theory. We show that the correspondence between empirical
theories, operational theories and ontological representations discussed in the
previous section gives rise to functors between suitable categories. In particular,
we establish an isomorphism between the categories Emp of empirical theories
and OT operational theories. This isomosrphism maps non-contextual empir-
ical theories to operational theories that admit a factorizable non-contextual
ontological representation.

6.1 A Categorical Setup

6.1.1 The Category of Empirical Theories

We will define the category Emp of empirical theories and transforma-
tions that preserve contextuality and statistical equivalence. The cat-
egory Emp is an extension of the category of empirical models introduced in [9].

Definition 5. A transformation between empirical theories is given by a triple
f = (fS , fM, fO) of maps between the set of states, the measurement cover and
the set of outcomes, respectively. In addition, each assignment C 7→ fM(C)
consists of a functor fC : C → fM(C) of the subcategories of objects with an
arrow to C and fM(C), respectively.
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Note that if CA and CB are posets, f is a simplicial map ↓ MA →↓ MB .
We write f for either component when it is clear from the context which one we
mean. If a transformation satisfies the following equation, we can recover the
statistical data of the domain from the statistical data of the image.

σC(s) =
∑

s′◦fC=fO◦s

fS(σ)fC(C)(s
′) ∀C ∈MA (14)

We will call such transformations contextuality preserving due to the
following Lemma.

Lemma 8. Let f : A → B be a transformation of empirical theories that
satisfies equation (14) and let σ be a state of A. If σ does not admit a global
section, then f(σ) does not admit a global section.

Proof. Suppose that f(σ) ∈ B has a global section ν ∈ DRE(f(XA)). This
means that ν|C′ = f(σ)C′ for all C ′ ∈ X. This induces a global section for σ,
given by µ(s) =

∑
s′◦fM=fO◦s ν|f(XA)(s

′) in DR(E(XA)).

When A and B are no-signalling models, fM is simply a functor of categories
CA → CB . Equation 14 then simplifies to the equation below.

σm(s) = fS(σ)fC(m)(s
′) ∀fO ◦ s(m) = s′ ◦ fC(m) ∀m ∈ XA (15)

In addition to equation 14, we require morphisms to preserve statistical
equivalence:

m ∼ m′ ⇒ f(m) ∼ f(m′) σ ∼ σ′ ⇒ f(σ) ∼ f(σ′) (16)

We can now prove the statement in Lemma 5, that any global section gives
rise to a global sections defined on equivalence classes.

Proof of Lemma 5. Consider the quotient map A
q−→ Ã and any inclusion map

Ã
i−→ A, which is defined as follows: [C] is mapped to some representative C

such that iC is a functor, and σ̃ is mapped to σ. It is easy to see that q and i
are morphisms in Emp. consequently, the proof follows from Lemma 8.

Remark 3. Another way to define transformations between empirical theories
is given in [4]. Here, empirical models are defined in terms of Chu spaces and the
function on states goes in the opposite direction. By that definition, contextuality
of states would only be preserved by transformations that are surjective on states.
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6.1.2 The category of operational theories

Operational theories form a categoryOt. Morphisms are tuples f = (fM , fP , fO) :
A→ B, such that fM : MA →MB , fP : PA → PB and fO : OA → OB preserve
outcome statistics and statistical equivalence:

dfP (p),fM (m)(f
O(k)) = dp,m(k) (17)

m ∼ m′ ⇒ f(m) ∼ f(m′) p ∼ p′ ⇒ f(p) ∼ f(p′) (18)

This category is similar to the category of operational theories defined in [4].

6.1.3 The category of ontological representations

Objects in the category OR of ontological representations correspond to a pair
of an ontological representation and its induced operational theory. Morphisms
consist of triples of maps (f, fµ, fξ), where f : A → B is a morphism of op-
erational theories, and fξ : ξ 7→ ξ′ and fµ : µ 7→ µ′ are functions of sets. We
require that the image of (f, fµ, fξ) realises the operational theory in the image
of f . This means that the images of the elements of µ and ξ coincide with
the elements corresponding to the images of fP and fM . We express this as
fµ(µp) = fµ(µ)fP (p) and fξ(ξm) = fξ(ξ)fM (m). In addition, one can deduce
from equations 1 and 17 that the equality below holds.∫

ΩB

fξ(ξm)(λ)(fO(k))fµ(µp)(λ)dλ =

∫
ΩA

ξm(λ)(k)µp(λ)dλ (19)

Remark 4. Note that the morphisms do not contain a component that maps
between the sets of ontological values. This is because our goal is not to un-
derstand individual ontological representations, but to explore the existence of
certain classes of ontological representations for operational theories.

There is a forgetful functor G : OR → OT that maps each ontological
representation to its corresponding operational theory. More precisely, it maps
(Ω, ξ, µ) to ({µp}p∈P , {ξm}m∈M , D,O), where dp,m :=

∫
Ω
µp(λ)ξm(λ))dλ. The

elements µP and ξM no longer represent distribution functions, but merely label
the preparations and measurements.

Lemma 9. Contextuality of operational theories is preserved by morphisms in
OT

Proof. Let f : A→ B be a morphism of operational theories. Let (ΩB , {µp}p∈PB
, {ξm}m∈MB

)
be a non-contextual ontological representation of B. This induces an ontolog-
ical representation (ΩB , {µ′p}p∈PA

, {ξ′m}m∈MA
), which is defined as µ′p := µfp,

ξ′m := ξfm. Non-contextuality of this ontological representation is guaranteed
by the equivalence preservation condition on f . It follows by contradiction that
when A is contextual, B must be contextual.
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6.2 Empirical and Operational theories

The assignment A 7→ Op(A) of an operational theory to each no-signalling
empirical theory described in Section 4.1 gives rise to the functor below.

Emp OT

A Op(A)

(fS , fC , fOA) (fM , fP , fOOp(A))

Op

Here, fM is defined as the assignment on objects of fM, fP := fS and
fOA = fOOp(A) , since OA = OOp(A). To verify that this is well-defined on
morphisms, one needs to check that equations 17 and 18 hold. Since we only
consider no-signalling empirical theories, this follows directly from equations 15
and 16. Functoriality is straightforward. We will show that it is in fact an
isomorphism of categories. As discussed in section 4, the assignment is bijective
on objects. To see that it is injective on morphisms, note that the functor fM is
completely determined by its assignments on objects, since CA and CB are thin
categories. Surjectivity follows from the fact that equations 15 and 16 imply
equations 17 and 18.

We will show that the isomorphism Emp Op−−→ OT maps non-contextual em-
pirical theories to operational theories that admit a factorizable non-contextual
ontological representation. In order to do so, we first examine how the canon-
ical ontological representation described in Section 4.1 gives rise to a functor

Emp R−→ OR. This functor maps each non-contextual empirical model to its
canonical non-contextual ontological representation. It maps each morphism of
empirical models to a morphism of ontological representations in an obvious
way, such that the effect on the outcome statistics is the same in either model.
Later we will show that the composition of this functor with the forgetful func-

tor OR → OT equals Emp Op−−→ OT on the class of non-contextual empirical
models.

Proposition 10. For any choice of global sections, the assignment A 7→ R(A)
defines an equivalence between the subcategory of non-contextual empirical the-
ories and the subcategory of non-contextual, factorizable ontological representa-
tions. The image Rf = (Rf, (Rf)µ, (Rf)ξ) of each morphism f = (fS , fM, fO)
has the following components

Rf := Op(f) (Rf)µ(σm) := fσf(m), (Rf)ξ(ξm)(s)(k) := δs(f(m)),k

Proof. We need to verify that for each f : A→ B in Emp, Rf : R(A)→ R(B)
is a well-defined morphism in the category of ontological representations. It is
easy to see that since f preserves statistical equivalence, Rf does too. By the
following equations, Rf also satisfies equation 19.
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∫
ΩR(A)

ξm(λ)(k)µσ(λ)dλ =
∑

λ∈E(m)

δλ(m),kσm(λ) (20)

=
∑

λ′∈E(f(m))

δλ′(f(m)),fO(k)fσf(m)(λ
′) (21)

=

∫
ΩR(B)

Ff(ξm)(λ′)(fO(k))Rf(µσ)(λ′)dλ′ (22)

The equalities are obtained by unfolding definitions, application of equa-
tion 15 and rewriting the summation.

By Lemma 6, R is essentially surjective on the subcategory of factorizable
non-contextual ontological representations. We will show that the functor R is
injective on hom-sets. First of all, δs(f(m)),k = δs(g(m)),k) for all k ∈ O implies
that fS = gS . Similarly, R(f)µ = R(g)µ implies fC = gC . We will prove
that F is surjective on hom-sets. Let (g, gµ, gξ) : RA → RB be a morphism in
OR. This corresponds to the morphism g′ : A → B in Emp with components
g′M(m) = gM (m) and g′S(σ)g′M(m(s)) = gP (µσ)(s) for s ∈ E(m). Since each ξ
in the image of g is a delta function, it must be equal to δλ(g(m)),k. Finally, to
show that equation 18 holds, we take equation 19 and unfold the definitions of
ΩA, ΩB , g(ξM ), and ξM . This gives us the equality below, which reduces to the
second condition for transformations of empirical theories.

∑
s∈E(m)

δs(m),kµσ(s) =
∑

s∈E(f(m))

δs(f(m)),kgµ(µσ)(s) (23)

Theorem 11. The isomorphism Op restricts to an isomorphism between the
subcategory of non-contextual empirical theories and the subcategory of opera-
tional theories that do not admit a factorizable non-contextual ontological rep-
resentation.

Proof. Note that the following diagram commutes, where we write EmpNC and
ORFNC for the subcategories of non-contextual empirical theories and factor-
izable non-contextual ontological representations, respectively.

Emp OT

EmpNC OR

ORFNC

Op

G

R
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Corollary 12. For models with perfect predictability, R restricts to an isomor-
phism between non-contextual empirical theories and non-contextual operational
theories.

7 Non-factorizable representations and POVM’s

In general, equivalence-based measurement contextuality implies sheaf-theoretic
contextuality, but not necessarily the other way around. The two formalisms
coincide for models with perfect predictability, as any non-contextual repre-
sentation for sharp measurements is necessarily factorizable. Furthermore, any
non-local scenario rules out non-factorizable ontological representations, as these
would violate local causality.

One may wonder if there are interesting examples of scenarios where the
two formalisms differ. Below we give a sufficient postulate under which the two
formalisms are equal.

The following example shows that the two formalisms are not equal for all
scenarios.

Example 1. There are three parties, A,B,C, that each conduct a measurement
with two outcomes, {0, 1}. It is possible for two parties to apply the measurement
at the same time, but it is not possible to apply all three measurements simul-
taneously. The measurement statistics is such that for any joint measurement,
the obtained outcome is (0, 1) half of the time, and (1, 0), half of the time.

This scenario cannot be realised by sharp measurements in quantum mechan-
ics. However, one can find a POVM for each joint measurement that margnalises
to the required outcomes: (0 · P0,0,

1
2 · P0,1,

1
2 · P1,0, 0 · P1,1), where Pi,j is the

projector onto outcome (i, j).

Lemma 13. The scenario in Example 1 is contextual in the sheaf sense, but
non-contextual in the equivalence-based sense

Proof. The marginal probabilities for each of the individual measurements are
1
2 for either of the outcomes. It follows that all measurements are statistically
equivalent, and hence, should not be distinguishable on the ontological level.
This means that we can define the set Ω := {∗} to be a singleton set. We
set µp(∗) = 1 for any preparation of this scenario, ξm(∗)(0) = ξm(∗)(1) = 1

2
for each of the elementary measurements, and ξm(∗)(0, 1) = ξm(∗)(1, 0) = 1

2 ,
for each of the joint measurements. On the other hand, it is not possible to
define a factorizable non-contextual ontological representation. It is easy to
see this, since without loss of generality, any global section of measurement
outcomes to the presheaf describing this scenario must assign the same outcome
to measurement A and B. But that means that it does not marginalise to an
admissible outcome for the joint measurement of A and B.

For a complete comparison of the two notions, a better understanding of
unsharp measurements is required. Another point of consideration is the extent
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to which the functors respect additional postulates. We have shown that for all
known examples of contextuality conditional to postulates in the equivalence-
based framework, the two notions coincide. However, this may not be the case
in general. Ideally, one would like to have a specification of the class of scenarios
and possibly postulates for which the formalisms are different. We leave this for
future work.
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