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The exploration of causal mechanisms is an integral part of science and technology. Causal
structures, as the main systematic means towards a fundamental understanding of such
mechanisms, are omnipresent in science. For instance, in medicine it is relevant to iden-
tify whether a new drug actually cures a disease or whether patients respond equally to
placebos; in economics causal insights are relevant to consciously regulate the market; and
physicists often make predictions about phenomena in terms of cause and effect.

Bell’s theorem shows that our intuitive understanding of causation does not apply to
quantum correlations [1]. Nevertheless, quantum mechanics does not permit signalling
and hence a notion of cause remains. Understanding this notion is not only conceptually
interesting, but also important for technological applications. Ruling out classical common
causes is important in information theory [2–10], especially for device-independent cryp-
tography where it has recently been shown that the ability to demonstrate non-classicality
implies the ability to generate secure random numbers [6–9]. It is therefore important to
characterise the set of classical correlations compatible with different causal structures as
far as possible.

A useful way to determine which classical causal structures give rise to a given set of
correlations is by using so called entropy vectors [11–17]. We analyse this technique and
derive new entropic inequalities that characterise classical causal structures, leading to
an improvement on the classical causal inference problem. We furthermore give the first
derivation of sufficient conditions for entropy vectors to be achievable in particular causal
structures, which, together with our improvement on the necessary conditions, brings us
closer to a characterisation of the boundary of the actual cones [18].

We also prove that there are limitations regarding the application of such entropic tech-
niques to causal scenarios that involve quantum systems. The standard approach for em-
ploying entropic techniques is not sufficient in this respect and we analyse which techniques
may still lead to further insights [19].

Considering causal structures with the entropy vector approach. Classical causal
structures may be analysed within the theory of Bayesian networks [20, 21]. Formally, a
classical causal structure is considered as a set of nodes that are arranged in a directed
acyclic graph (DAG). Each node is associated with a random variable for which the DAG
encodes constraints on their joint distribution as follows: Let C be a classical causal
structure with nodes X1, X2, . . . , Xn, where the first k nodes are observed. An observed
joint probability distribution over these k variables is compatible with C, if it can be
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decomposed as

PX1X2...Xk
=

∑
Xk+1,...,Xn

n∏
i=1

P
Xi|X

↓1
i
, (1)

where X↓1i denotes the parent nodes in the DAG (i.e., all nodes from which an arrow points
directly at Xi).

While the problem of checking compatibility for a certain distribution is in principle
solved, it is in practice difficult to check whether a particular distribution can be decom-
posed according to (1). Furthermore, as most causal structures yield sets of compatible
probability distributions that are non-convex, deriving certificates to rule out membership
is challenging. The search for simplifications and methods to tackle this problem is an
active area of research [11–17,22–28], where special emphasis has been lying on the use of
entropies [11–17,22,26].

In these entropic approaches [11,13,16,29], the basic idea is to map the joint distribution
PX1X2...Xk

as well as all its marginal distributions to their respective Shannon entropies,
which leads to an entropy vector

(H(X1), H(X2), . . . , H(Xk), H(X1X2), H(X1X3), . . . , H(X1X2 . . . Xk)).

Any such vector has to obey a set of constraints that are known to hold for the Shannon
entropy of any distribution, e.g. the positivity of all its components. The independences (1),
encoded in the causal structure, can be translated to linear constraints on the components
of such entropy vectors.

The mapping to entropy vectors is particularly beneficial, as the set of entropy vectors that
are compatible with a causal structure form a convex cone, which enables the application
of linear programming tools. We use entropy vectors to derive the following results.

Improvement on the current entropic techniques [18]. We find that for many
causal structures so called non-Shannon entropic inequalities [30] allow us to derive new
constraints on the sets of possible entropy vectors in the classical case. Hence, they lead
to tighter approximations of the set of realisable entropy vectors, which enables a sharper
distinction of different causal structures.

We have for instance derived several (infinite) families of inequalities for the triangle
scenario (cf. Figure 1(a)). These allow us to prove that previous approximations of this
entropic cone were not tight (contrary to what has been claimed in the literature [14, 16])
and to improve on its distinction from other causal structures such as the one in Figure 1(b).
For the triangle causal structure this is rather surprising, as for three variable distributions
the entropic cones are tight; only the joint distribution with the three unobserved variables
that we marginalise over allows for the application of additional non-Shannon constraints.

Regarding the quantum case, we have shown that for causal structures that involve up to
five random variables there is never a distinction between classical and quantum entropic
cones in this approach.1 The same could not be established for causal structures that

1Note that this does neither contradict Braunstein and Caves’ results for the Bell scenario [31], nor
its generalisations [11, 13, 26]. These works all take conditioning the involved variables on particular
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Fig. 1: Three-party correlations. (a) Triangle causal structure: Three observed random
variables X, Y and Z have pairwise common causes A, B and C. In the classical case
these common causes are random variables while in the quantum case these are replaced
by quantum systems ρA, ρB and ρC. (b) Causal structure that allows for any three-party
correlations (in the classical and quantum case).
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Fig. 2: A family of causal structures including the bipartite Bell scenario. There are n
observed variables, X1, X2, . . . , Xn, and n−1 unobserved ones, C1, C2, . . . , Cn−1. The latter
correspond to random variables in the classical case and to quantum systems if the causal
structure is quantum.

involve six random variables (such as the triangle). Instead, we found that for all six
variable causal structures where quantum correlations may allow for a larger set of joint
distributions than classical hidden variables (all listed in [15]), non-Shannon inequalities
play an important role for their entropic characterisation. A behaviour which is likely to
extend to most causal structures that involve more nodes.

Whether these improved entropic characterisations are also valid in the quantum case
remains an open problem whose resolution would have implications for the discrimination
of classical and quantum cause and for the problem of whether there exist novel inequalities
for the von Neumann entropy beyond strong subadditivity.

Problems for the distinction between classical and quantum cause [19]. We
consider the question of whether entropy vectors can lead to useful certificates of non-
classicality. We have established that for a family of causal structures that include the
bipartite Bell scenario they do not, in spite of the existence of non-classical correlations
in all of them (cf. Figure 2). The same is true for the bilocality causal structure, which is
important in the context of entanglement swapping and finds technological application in
quantum repeaters [32, 33].

Due to these stark limitations we analyse methods extending the entropy vector ap-
proach [11, 13, 26, 31], which allow for the derivation of entropic certificates for non-
classicality in these and other causal structures. We find that, in general, these methods
also benefit from the application of non-Shannon inequalities.

values of certain observed input nodes into account. They effectively consider modified causal structures
and different types of marginals. Such methods are, however, not generally applicable, e.g. the triangle
scenario does not fulfil the conditions that allow for the application of these approaches.
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